M. L. Etheridge, S. A. Campbell, A. G. Erdman, C. L. Haynes, S. M. Wolf et al., The big picture on nanomedicine: the state of investigational and approved nanomedicine products, Nanomed. Nanotechnol. Biol. Med, vol.9, issue.1, pp.1-14, 2013.

Y. Matsumura and H. Maeda, A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs, Cancer Res, vol.46, pp.6387-6392, 1986.

J. D. Byrne, T. Betancourt, and L. Brannon-peppas, Active targeting schemes for nanoparticle systems in cancer therapeutics, Adv. Drug Deliv. Rev, vol.60, issue.15, pp.1615-1626, 2008.

E. V. Batrakova and A. V. Kabanov, Pluronic block copolymers: evolution of drug delivery concept from inert nanocarriers to biological response modifiers, J. Control. Release, vol.130, issue.2, pp.98-106, 2008.

X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose et al., Quantum dots for live cells, in vivo imaging, and diagnostics, Science, vol.307, issue.5709, pp.538-544, 2005.

T. A. Taton, C. A. Mirkin, and R. L. Letsinger, Scanometric DNA array detection with nanoparticle probes, Science, vol.289, issue.5485, pp.1757-1760, 2000.

H. B. Na, I. C. Song, and T. Hyeon, Inorganic nanoparticles for MRI contrast agents, Adv. Mater, vol.21, issue.21, pp.2133-2148, 2009.

D. Yoo, J. H. Lee, T. H. Shin, and J. Cheon, Theranostic magnetic nanoparticles, Acc. Chem. Res, vol.44, issue.10, pp.863-874, 2011.

D. Georgin, B. Czarny, M. Botquin, M. Mayne-l'hermite, M. Pinault et al., Preparation of (14) C-labeled multiwalled carbon nanotubes for biodistribution investigations, J. Am. Chem. Soc, vol.131, issue.41, pp.14658-14659, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01930685

C. S. Kumar and F. Mohammad, Magnetic nanomaterials for hyperthermia based therapy and controlled drug delivery, Adv. Drug Deliv. Rev, vol.63, issue.9, pp.789-808, 2011.

K. Yang, S. Zhang, G. Zhang, X. Sun, S. T. Lee et al., Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy, Nano Lett, vol.10, issue.9, pp.3318-3323, 2010.

K. Yang, J. Wan, S. Zhang, B. Tian, Y. Zhang et al., The influence of surface chemistry and size of nanoscale graphene oxide on photothermal therapy of cancer using ultra-low laser power, Biomaterials, vol.33, issue.7, pp.2206-2214, 2012.

P. Cherukuri, E. S. Glazer, and S. A. Curley, Targeted hyperthermia using metal nanoparticles, Adv. Drug Deliv. Rev, vol.62, issue.3, pp.339-345, 2010.

J. F. Hainfeld, D. N. Slatkin, and H. M. Smilowitz, The use of gold nanoparticles to enhance radiotherapy in mice, Phys. Med. Biol, vol.49, issue.18, pp.309-315, 2004.

E. Porcel, S. Liehn, H. Remita, N. Usami, K. Kobayashi et al., Platinum nanoparticles: a promising material for future cancer therapy, Nanotechnology, vol.21, issue.8, p.85103, 2010.

L. Maggiorella, G. Barouch, C. Devaux, A. Pottier, E. Deutsch et al., Nanoscale radiotherapy with hafnium oxide nanoparticles, vol.8, pp.1167-1181, 2012.

M. J. Sailor and J. H. Park, Hybrid nanoparticles for detection and treatment of cancer, Adv. Mater, vol.24, issue.28, pp.3779-3802, 2012.

W. T. Al-jamal and K. Kostarelos, Liposomes: from a clinically established drug delivery system to a nanoparticle platform for theranostic nanomedicine, Acc. Chem. Res, vol.44, issue.10, pp.1094-10104, 2011.

M. Liong, J. Lu, M. Kovochich, T. Xia, S. G. Ruehm et al., Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery, ACS Nano, vol.2, issue.5, pp.889-896, 2008.

G. Wu, A. Mikhailovsky, H. A. Khant, C. Fu, W. Chiu et al., Remotely triggered liposome release by near-infrared light absorption via hollow gold nanoshells, J. Am. Chem. Soc, vol.130, issue.36, pp.8175-8177, 2008.

H. S. Choi, W. Liu, P. Misra, E. Tanaka, J. P. Zimmer et al., Renal clearance of quantum dots, Nat. Biotechnol, vol.25, issue.10, pp.1165-1170, 2007.

V. Vaijayanthimala, Y. K. Tzeng, H. C. Chang, and C. L. Li, The biocompatibility of fluorescent nanodiamonds and their mechanism of cellular uptake, Nanotechnology, vol.20, issue.42, p.425103, 2009.

Y. Yuan, X. Wang, G. Jia, J. H. Liu, T. Wang et al., Pulmonary toxicity and translocation of nanodiamonds in mice, Diam. Relat. Mater, vol.19, issue.4, pp.291-299, 2010.

A. M. Schrand, S. A. Hens, and O. A. Shenderova, Nanodiamond particles: properties and perspectives for bioapplications, Crit. Rev. Solid State Mater. Sci, vol.34, issue.1-2, pp.18-74, 2009.

V. Paget, J. A. Sergent, R. Grall, S. Altmeyer-morel, H. A. Girard et al., Carboxylated nanodiamonds are neither cytotoxic nor genotoxic on kidney, intestine, lung and liver human cell lines, Nanotoxicology, vol.8, issue.S1, pp.46-56, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01862308

B. Zhang, Y. Li, C. Y. Fang, C. C. Chang, C. S. Chen et al., Receptor-mediated cellular uptake of folate-conjugated fluorescent nanodiamonds: a combined ensemble and single-particle study, Small, vol.5, issue.23, pp.2716-2721, 2009.

A. Alhaddad, M. P. Adam, J. Botsoa, G. Dantelle, S. Perruchas et al., Nanodiamond as a vector for siRNA delivery to Ewing sarcoma cells, Small, vol.7, issue.21, pp.3087-3095, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00648255

A. Krueger and D. Lang, Functionality is key: recent progress in the surface modification of nanodiamond, Adv. Funct. Mater, vol.22, issue.5, pp.890-906, 2012.

A. Alhaddad, C. Durieu, G. Dantelle, E. L. Cam, and C. Malvy, Influence of the internalization pathway on the efficacy of siRNA delivery by cationic fluorescent nanodiamonds in the Ewing sarcoma cell model, PLoS ONE, vol.7, issue.12, p.52207, 2012.

K. K. Liu, W. W. Zheng, C. C. Wang, Y. C. Chiu, C. L. Cheng et al., Covalent linkage of nanodiamond-paclitaxel for drug delivery and cancer therapy, Nanotechnology, vol.21, issue.31, p.315106, 2010.

E. K. Chow, X. Q. Zhang, M. Chen, R. Lam, E. Robinson et al., Nanodiamond therapeutic delivery agents mediate enhanced chemoresistant tumor treatment, Sci. Transl. Med, vol.3, issue.73, pp.73-94, 2011.

J. Li, Y. Zhu, W. Li, X. Zhang, P. Peng et al., Nanodiamonds as intracellular transporters of chemotherapeutic drug, Biomaterials, vol.31, issue.32, pp.8410-8418, 2010.

Y. R. Chang, H. Y. Lee, K. Chen, C. C. Chang, D. S. Tsai et al., Mass production and dynamic imaging of fluorescent nanodiamonds, Nat. Nanotech, vol.3, pp.284-288, 2008.

J. I. Chao, E. Perevedentseva, P. H. Chung, K. K. Liu, C. Y. Cheng et al., Nanometer-sized diamond particle as a probe for biolabeling, Biophys. J, vol.93, issue.6, pp.2199-2208, 2007.

F. P. Bundy, W. A. Bassett, M. S. Weathers, R. J. Hemley, H. K. Mao et al., The pressure-temperature phase and transformation diagram for carbon, Carbon, vol.34, issue.2, pp.141-153, 1996.

V. N. Mochalin, O. Shenderova, D. Ho, and Y. Gogotsi, The properties and applications of nanodiamonds, Nat. Nanotech, vol.7, pp.11-23, 2012.

F. P. Bundy, H. T. Hall, H. M. Strong, and R. H. Wentorf, Man-made diamonds, Nature, vol.176, issue.4471, pp.51-55, 1955.

J. C. Angus and C. C. Hayman, Low-pressure, metastable growth of diamond and "diamondlike" phases, Science, vol.241, issue.4868, pp.913-921, 1988.

G. W. Yang, J. B. Wang, and Q. X. Liu, Preparation of nano-crystalline diamonds using pulsed laser induced reactive quenching, J. Phys.: Condens. Matter, vol.10, issue.35, pp.7923-7928, 1998.

J. Sun, S. L. Hu, X. W. Du, and Y. W. Lei, Ultrafine diamond synthesized by long-pulse-width laser, Appl. Phys. Lett, vol.89, issue.18, p.183115, 2006.

J. P. Boudou, P. A. Curmi, F. Jelezko, J. Wrachtrup, P. Aubert et al., High yield fabrication of fluorescent Nanodiamonds, Nanotechnology, vol.20, issue.35, p.235602, 2009.
URL : https://hal.archives-ouvertes.fr/inserm-00429145

J. P. Boudou, J. Tisler, R. Reuter, A. Thorel, P. A. Curmi et al., Fluorescent nanodiamonds derived from HPHT with a size of less than 10 nm, Diam. Relat. Mater, vol.37, pp.80-86, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00841449

E. Neu, C. Arend, E. Gross, F. Guldner, C. Hepp et al., Narrowband fluorescent nanodiamonds produced from chemical vapor deposition films, Appl. Phys. Lett, vol.98, issue.24, p.243107, 2011.

V. Danilenko and O. Shenderova, Advances in synthesis of nanodiamond particles, Ultrananocrystalline Diamond: Synthesis, Properties and Applications, 2012.

V. Y. Dolmatov, Detonation-synthesis nanodiamonds: synthesis, structure, properties and applications, Russ. Chem. Rev, vol.76, issue.4, pp.339-360, 2007.

O. Shenderova, A. Koscheev, N. Zaripov, I. Petrov, Y. Skryabin et al., Surface chemistry and properties of ozone-purified detonation nanodiamonds, J. Phys. Chem. C, vol.115, issue.20, pp.9827-9837, 2011.

J. E. Dahl, S. G. Liu, and R. M. Carlson, Isolation and structure of higher diamondoids, nanometer-sized diamond molecules, Science, vol.299, issue.5603, pp.96-102, 2003.

O. O. Mykhaylyk, Y. M. Solonin, D. N. Batchelder, and R. Brydson, Transformation of nanodiamond into carbon onions: a comparative study by high-resolution transmission electron microscopy, electron energy-loss spectroscopy, x-ray diffraction, small-angle x-ray scattering, and ultraviolet Raman spectroscopy, J. Appl. Phys, vol.97, issue.7, p.74302, 2005.

E. Osawa and D. Ho, Nanodiamond and its application to drug delivery, J. Med. Allied Sci, vol.2, issue.2, pp.31-40, 2012.

A. S. Barnard, M. Sternberg, O. I. Turner, O. Lebedev, I. I. Shenderova et al., Determination of size, morphology, and nitrogen impurity location in treated detonation nanodiamond by transmission electron microscopy, Adv. Funct. Mater, vol.17, issue.45, pp.2116-2124, 2007.

D. C. Bell, C. J. Russo, and D. V. Kolmykov, 40 keV atomic resolution TEM, Ultramicroscopy, vol.114, pp.38-45, 2012.

B. Palosz, S. Stelmakh, E. Grzanka, S. Gierlotka, and W. Palosz, Application of apparent lattice parameter to determination of core-shell structure of nanocrystals, Z. Kristallogr, vol.222, issue.11, pp.580-594, 2007.

V. L. Kuznetsov, M. N. Aleksandrov, I. V. Zagoruiko, A. L. Chuvilin, E. M. Moroz et al., Study of ultradispersed diamond powders obtained using explosion energy, Carbon, vol.29, issue.4-5, pp.90135-90141, 1991.

T. Petit, J. C. Arnault, H. A. Girard, M. Sennour, and P. Bergonzo, Early stages of surface graphitization on nanodiamond probed by x-ray photoelectron spectroscopy, Phys. Rev. B, vol.84, issue.23, p.233407, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00675687

D. Ballutaud, F. Jomard, T. Kociniewski, E. Rzepka, H. A. Girard et al., Sp(3)/sp(2) character of the carbon and hydrogen configuration in micro-and nanocrystalline diamond, Diam. Relat. Mater, vol.17, issue.4-5, pp.451-456, 2008.
URL : https://hal.archives-ouvertes.fr/cea-02189568

B. R. Smith, D. Inglis, B. Sandnes, J. Rabeau, A. V. Zvyagin et al., Five-nanometer diamond with luminescent nitrogen-vacancy defect centers, Small, vol.5, issue.14, pp.1649-1653, 2009.

V. Fionov, A. Lund, W. M. Chen, N. N. Rozhkova, I. A. Buyanova et al., Paramagnetic centers in detonation nanodiamonds studied by CW and pulse EPR, Chem. Phys. Lett, vol.493, pp.319-322, 2010.

J. H. Loubser and J. A. Van-wyk, Electron spin resonance in the study of diamond, Rep. Progr. Phys, vol.41, issue.8, pp.1201-1248, 1978.

V. Pichot, O. Stephan, M. Comet, E. Fousson, J. Mory et al., High nitrogen doping of detonation nanodiamonds, J. Phys. Chem. C, vol.114, issue.22, pp.10082-10087, 2010.

Y. G. Lu, S. Turner, J. Verbeeck, S. D. Janssens, P. Wagner et al., Direct visualization of boron dopant distribution and coordination in individual chemical vapor deposition nanocrystalline B-doped diamond grains, Appl. Phys. Lett, vol.101, issue.4, p.41907, 2012.

S. Turner, Y. G. Lu, S. D. Janssens, F. Da-pieve, D. Lamoen et al., Local boron environment in B-doped nanocrystalline diamond films, Nanoscale, vol.4, pp.5960-5964, 2012.

A. V. Kvit, V. V. Zhirnov, T. Tyler, and J. J. Hren, Aging effect and nitrogen distribution in diamond nanoparticles, Comp. Part B Eng, vol.35, issue.2, pp.163-166, 2004.

I. I. Vlasov, Hydrid diamond-graphite nanowires produced by microwave plasma chemical vapor deposition, Adv. Mater, vol.19, issue.22, pp.4058-4062, 2007.

O. A. Shenderova, I. I. Vlasov, S. Turner, G. Van-tendeloo, S. B. Orlinskii et al., Nitrogen control in nanodiamond produced by detonation shock-waveassisted synthesis, J. Phys. Chem. C, vol.115, issue.29, pp.14014-14024, 2011.

T. Berg, E. Marosits, J. Maul, P. Nagel, U. Ott et al., Quantum confinement observed in the x-ray absorption spectrum of size distributed meteoritic nanodiamonds, J. Appl. Phys, vol.104, issue.6, p.64303, 2008.

A. M. Panich-;-bradac, T. Gaebel, N. Naidoo, M. J. Sellars, J. Twamley et al., Observation and control of blinking nitrogen-vacancy centres in discrete nanodiamonds, Crit. Rev. Solid State Mater. Sci, vol.37, issue.4, pp.345-349, 2010.

A. Krüger, F. Kataoka, M. Ozawa, T. Fujino, Y. Suzuki et al., Unusually tight aggregation in detonation nanodiamond: identification and disintegration, Carbon, vol.43, issue.8, pp.1722-1730, 2005.

J. C. Arnault, T. Petit, H. A. Girard, A. Chavanne, C. Gesset et al., Surface chemical modifications and surface reactivity of nanodiamonds hydrogenated by CVD plasma, Phys. Chem. Chem. Phys, vol.13, issue.6, p.11481, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01271867

M. Mermoux, B. Marcus, G. M. Swain, and J. E. Butler, A confocal raman imaging study of an optically transparent boron-doped diamond electrode, J. Phys. Chem. B, vol.106, issue.42, pp.10816-10827, 2002.
URL : https://hal.archives-ouvertes.fr/hal-00418109

S. Osswald, V. N. Mochalin, M. Havel, G. Yushin, and Y. Gogotsi, Phonon confinement effects in the Raman spectrum of nanodiamond, Phys. Rev. B, vol.80, issue.7, p.75419, 2009.

M. Chaigneau, G. Piccardi, H. A. Girard, J. C. Arnault, and R. Ossikovski, Laser heating versus phonon confinement effect in the Raman spectra of diamond nanoparticles, J. Nanopart. Res, vol.14, issue.6, p.955, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00837980

D. R. Baer and M. H. Engelhard, XPS analysis of nanostructured materials and biological surfaces, J. Electron Spectrosc. Relat. Phenom, pp.415-432, 2010.

T. Petit, J. C. Arnault, H. A. Girard, M. Sennour, T. Y. Kang et al., Oxygen hole doping of nanodiamond, Nanoscale, vol.4, issue.21, p.6792, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00751936

S. Michaelson, A. Stacey, R. Akhvlediani, S. Prawer, and A. Hoffman, High resolution electron energy loss spectroscopy surface studies of hydrogenated detonation nano-diamond spray-deposited films, Surf. Sci, vol.604, pp.1326-1330, 2010.

C. L. Cheng, C. F. Chen, W. C. Shaio, D. S. Tsai, and K. H. Chen, The CH stretching features on diamonds of different origins, Diam. Relat. Mater, vol.14, issue.9, pp.1455-1462, 2005.

P. H. Chung, E. Perevedentseva, J. S. Tu, C. C. Chang, and C. L. Cheng, Spectroscopic study of bio-functionalized nanodiamonds, Diam. Relat. Mater, vol.15, issue.4-8, pp.622-625, 2006.

Z. Remes, H. Kozak, B. Rezek, E. Ukraintsev, O. Babchenko et al., Diamond-coated ATR prism for infrared absorption spectroscopy of surface-modified diamond nanoparticles, Appl. Surf. Sci, vol.270, pp.411-417, 2013.
URL : https://hal.archives-ouvertes.fr/cea-01816405

S. Ghodbane, A. Deneuville, D. Tromson, P. Bergonzo, E. Bustarret et al., Sensitivity of Raman spectra excited at 325 nm to surface treatments of undoped polycrystalline diamond films, Phys. Stat. Sol. A, vol.203, issue.10, pp.2397-2402, 2006.

A. Crisci, M. Mermoux, and B. Saubat-marcus, Deep ultra-violet Raman imaging of CVD boron-doped and nondoped diamond films, Diam. Relat. Mater, vol.17, issue.7-10, pp.1207-1211, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00365511

F. Cataldo and A. Koscheev, A study of the action of ozone and on the thermal stability of nanodiamond, Fuller. Nanotub. Carbon Nanostruct, vol.11, issue.3, p.201, 2003.

A. Koshcheev, Thermodesorption mass spectrometry in the light of solution of the problem of certification and unification of the surface properties of detonation nano-diamonds, Russ. J. Gener. Chem, vol.79, issue.9, pp.2033-2044, 2009.

A. Krueger, M. Ozawa, G. Jarre, Y. Liang, J. Stegk et al., Deagglomeration and functionalisation of detonation diamond, Physica Status Solidi A, vol.204, issue.9, pp.2881-2887, 2007.

A. E. Aleksenskiy, E. D. Eydelman, and A. Y. Vul, Deagglomeration of detonation nanodiamonds, Nanosci. Nanotechnol. Lett, vol.3, issue.1, pp.68-74, 2011.

T. Petit, H. A. Girard, A. Trouve, I. Batonneau-genner, P. Bergonzo et al., Surface transfer doping can mediate both colloidal stability and self-assembly of nanodiamonds, Nanoscale, vol.5, pp.8958-8962, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00964990

H. A. Girard, J. C. Arnault, S. Perruchas, S. Saada, T. Gacoin et al., Hydrogenation of nanodiamonds using MPCVD: a new route toward organic functionalization, vol.19, pp.1117-1123, 2010.
URL : https://hal.archives-ouvertes.fr/cea-01807231

O. A. Williams, J. Hees, C. Dieker, W. Jäger, L. Kirste et al., Size-dependent reactivity of diamond nanoparticles, ACS Nano, vol.4, issue.8, pp.4824-4830, 2010.

S. Osswald, G. Yushin, V. Mochalin, S. O. Kucheyev, and Y. Gogotsi, Control of sp 2 /sp 3 carbon ratio and surface chemistry of nanodiamond powders by selective oxidation in air, J. Am. Chem. Soc, vol.128, issue.36, pp.11635-11642, 2006.

A. Krüger, Y. Liang, G. Jarre, and J. Stegk, Surface functionalisation of detonation diamond suitable for biological applications, J. Mater. Chem, vol.16, issue.24, pp.2322-2328, 2006.

R. Martín, M. Álvaro, J. R. Herance, and H. García, Fenton-treated functionalized diamond nanoparticles as gene delivery system, ACS Nano, vol.4, issue.1, pp.65-74, 2010.

Y. Morita, T. Takimoto, H. Yamanaka, K. Kumekawa, S. Morino et al., A facile and scalable process for size-controllable separation of nanodiamond particles as small as 4 nm, Small, vol.4, issue.12, pp.2154-2157, 2008.

H. A. Girard, T. Petit, S. Perruchas, J. C. Arnault, and P. Bergonzo, Surface properties of hydrogenated nanodiamonds: a chemical investigation, Phys. Chem. Chem. Phys, vol.13, issue.32, pp.11511-11516, 2011.
URL : https://hal.archives-ouvertes.fr/cea-01807359

Y. Liu, Z. Gu, J. L. Margrave, and V. N. Khabashesku, Functionalization of nanoscale diamond powder: fluoro-, alkyl-, amino-, and amino acid-nanodiamond derivatives, Chem. Mater, vol.16, issue.20, pp.3924-3930, 2004.

M. A. Ray, T. Tyler, B. Hook, A. Martin, G. Cunningham et al., Cool plasma functionalization of nano-crystalline diamond films, Diam. Relat. Mater, vol.16, issue.12, pp.2087-2089, 2007.

K. I. Sotowa, T. Amamoto, A. Sobana, K. Kusakabe, and T. Imato, Effect of treatment temperature on the amination of chlorinated diamond, Diam. Relat. Mater, vol.13, issue.1, pp.145-150, 2004.

W. S. Yeap, S. Chen, and K. P. Loh, Detonation nanodiamond: an organic platform for the Suzuki coupling of organic molecules, Langmuir, vol.25, issue.1, pp.185-191, 2009.

C. L. Huang and H. C. Chang, Adsorption and immobilization of cytochrome c on nanodiamonds, Langmuir, vol.20, issue.14, pp.5879-5884, 2004.

Y. Liang, T. Meinhardt, G. Jarre, M. Ozawa, P. Vrdoljak et al., Deagglomeration and surface modification of thermally annealed nanoscale diamond, J. Colloid Interface Sci, vol.354, issue.1, pp.23-30, 2011.

J. Chen, S. Z. Deng, J. Chen, Z. X. Yu, and N. S. Xu, Graphitization of nanodiamond powder annealed in argon ambient, Appl. Phys. Lett, vol.74, issue.24, p.3651, 1999.

Y. Liang, M. Ozawa, and A. Krueger, A general procedure to functionalize agglomerating nanoparticles demonstrated on nanodiamond, ACS Nano, vol.3, issue.8, pp.2288-2296, 2009.

J. B. Cui, J. Ristein, and L. Ley, Electron affinity of the bare and hydrogen covered single crystal diamond (111) surface, Phys. Rev. Lett, vol.81, issue.2, pp.429-432, 1998.

L. Ley, J. Ristein, F. Meier, M. Riedel, and P. Strobel, Surface conductivity of the diamond: a novel transfer doping mechanism. Phys. B 376-377, pp.262-267, 2006.

B. V. Spitsyn, S. A. Denisov, N. A. Skorik, A. G. Chopurova, S. A. Parkaeva et al., The physical-chemical study of detonation nanodiamond application in adsorption and chromatography, Diam. Relat. Mater, vol.19, issue.2-3, pp.123-127, 2010.

S. Ida, T. Tsubota, O. Hirabayashi, M. Nagata, Y. Matsumoto et al., Chemical reaction of hydrogenated diamond surface with peroxide radical initiators, Diam. Relat. Mater, vol.12, issue.3-7, pp.601-605, 2003.

I. I. Obraztsova and N. K. Eremenko, Physicochemical modification of nanodiamonds, Russ. J. Appl. Chem, vol.81, issue.4, pp.603-608, 2008.

M. B. Smith and J. March, March's Advanced Organic Chemistry, 6th edn, 2007.

D. Ager, Hydrogenation of carbon-carbon double bonds, Science of Synthesis, Stereoselective Synthesis, pp.185-256, 2011.

M. Yeganeh, P. Coxon, A. Brieva, V. Dhanak, L. ?iller et al., Atomic hydrogen treatment of nanodiamond powder studied with photoemission spectroscopy, Phys. Rev. B, vol.75, issue.15, pp.1-8, 2007.

J. Angus, H. A. Will, and W. S. Stanko, Growth of diamond seed crystals by vapor deposition, J. Appl. Phys, vol.39, issue.6, pp.2915-2922, 1968.

E. Van-hove, J. De, J. C. Sanoit, S. Arnault, C. Saada et al., Stability of H-terminated BDD electrodes: an insight into the influence of the surface preparation, Phys. Stat. Solid. A, vol.204, issue.9, pp.2931-2939, 2007.

R. Kiran, E. Scorsone, J. De, J. C. Sanoit, P. Arnault et al., Boron doped diamond electrodes for direct measurement in biological fluids: an in situ regeneration approach, J. Electrochem. Soc, vol.160, issue.1, pp.67-73, 2013.
URL : https://hal.archives-ouvertes.fr/cea-01802314

W. S. Yang, O. Auciello, J. E. Butler, W. Cai, J. A. Carlisle et al., DNA-modified nanocrystalline diamond thin-films as stable, biologically active substrates, Nat. Mater, vol.1, pp.253-257, 2002.

T. Strother, T. Knickerbocker, J. Russell, J. Butler, L. Smith et al., Photochemical functionalization of diamond films, Langmuir, vol.18, issue.4, pp.968-971, 2002.

A. Hartl, E. Schmich, J. A. Garrido, J. Hernando, S. C. Catharino et al., Protein-modified nanocrystalline diamond thin films for biosensor applications, Nat. Mater, vol.3, pp.736-742, 2004.

Y. Zhong and K. Loh, The chemistry of C-H bond activation on diamond, Chem. Asian J, vol.5, issue.7, pp.1532-1540, 2010.

S. Szunerits and R. Boukherroub, Different strategies for functionalization of diamond surfaces, J. Solid State Electrochem, vol.12, issue.10, pp.1205-1218, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00386278

F. Maier, M. Riedel, B. Mantel, J. Ristein, and L. Ley, Origin of surface conductivity in diamond, Phys. Rev. Lett, vol.85, issue.16, pp.3472-3475, 2000.

C. Bandis and B. B. Pate, Electron-emission due to exciton breakup from negative electron-affinity diamond, Phys. Rev. Lett, vol.74, issue.5, pp.777-780, 1995.

B. M. Nichols, J. E. Butler, J. N. Russell, and R. J. Hamers, Photochemical functionalization of hydrogen-terminated diamond surfaces: a structural and mechanistic study, J. Phys. Chem. B, vol.109, issue.44, pp.20938-20947, 2005.

D. Shin, B. Rezek, N. Tokuda, D. Takeuchi, H. Watanabe et al., Photo-and electrochemical bonding of DNA to single crystalline CVD diamond, Phys. Status Solidi A, vol.203, issue.13, pp.3245-3272, 2006.

S. Lud, M. Steenackers, R. Jordan, P. Bruno, D. Gruen et al., Chemical grafting of biphenyl self-assembled monolayers on ultrananocrystalline diamond, J. Am. Chem. Soc, vol.128, issue.51, pp.16884-16891, 2006.

Y. V. Butenko, V. L. Kuznetsov, E. A. Paukshtis, A. I. Stadnichenko, I. N. Mazov et al., The thermal stability of nanodiamond surface groups and onset of nanodiamond graphitization. Fullerenes, Nanotubes, Carbon Nanostruct, vol.14, issue.2-3, pp.557-564, 2006.

L. Rondin, G. Dantelle, A. Slablab, F. Grosshans, F. Treussart et al., Surface-induced charge state conversion of nitrogen-vacancy defects in nanodiamonds, Phys. Rev. B, vol.82, issue.11, p.115449, 2010.

O. Shenderova, I. Petrov, J. Walsh, V. Grichko, T. Tyler et al., Modification of detonation nanodiamonds by heat treatment in air, Diam. Relat. Mater, vol.15, issue.11-12, pp.1799-1803, 2006.

D. Mitev, R. Dimitrova, M. Spassova, C. Minchev, and S. Stavrev, Surface peculiarities of detonation nanodiamonds in dependence of fabrication and purification methods, Diam. Relat. Mater, vol.16, issue.4-7, pp.776-780, 2007.

M. Comet, V. Pichot, B. Siegert, F. Britz, and D. Spitzer, Detonation nanodiamonds for Doping Kevlar, J Nanosci. Nanotechnol, vol.10, issue.7, pp.4286-4292, 2010.

A. Krueger, The structure and reactivity of nanoscale diamond, J. Mater. Chem, vol.18, issue.13, pp.1485-1492, 2008.

O. Shenderova, A. M. Panich, S. Moseenkov, S. C. Hens, V. Kuznetsov et al., Hydroxylated detonation nanodiamond: FTIR, XPS, and NMR studies, J. Phys. Chem. C, vol.115, issue.39, pp.19005-19011, 2011.

R. Martin, P. C. Heydorn, M. Alvaro, and H. Garcia, General strategy for high-density covalent functionalization of diamond nanoparticles using Fenton chemistry, Chem. Mater, vol.21, issue.19, pp.4505-4514, 2009.

G. Lisichkin, V. Korol'kov, B. Tarasevic, I. Kulakova, and A. Karpukhin, Photochemical chlorination of nanodiamond and interaction of its modified surface with C-nucleophiles, Russ. Chem. Bull, vol.55, issue.12, pp.2212-2219, 2006.

B. V. Spitsyn, J. L. Davidson, M. N. Graboboev, T. B. Galushko, N. V. Serebryakova et al., In road to modifications of detonation nanodiamond, Diam. Relat. Mater, vol.15, issue.2-3, pp.296-299, 2006.

V. N. Mochalin, S. Osswald, C. Portet, G. Yushin, C. Hobson et al., High temperature functionalization and surface modification of nanodiamond powders, MRS Proc, vol.1039, pp.201-211, 2007.

V. Ralchenko, L. Nistor, E. Pleuler, A. Khomich, I. Vlasov et al., Structure and properties of hightemperature annealed CVD diamond, Diam. Relat. Mater, vol.12, issue.10-11, pp.1964-1970, 2003.

S. Ogawa, T. Yamada, S. Ishizduka, A. Yoshigoe, M. Hasegawa et al., Vacuum annealing formation of graphene on diamond C(111) surfaces studied by real-time photoelectron spectroscopy, Jpn. J. Appl. Phys, vol.51, issue.11s, pp.11-13, 2012.

T. Evans, Changes produced by high temperature treatment of diamond, The Properties of Natural and Synthetic Diamonds, pp.403-425, 1979.

K. S. Uspenskaya, Y. N. Tolmachev, and D. V. Fedoseev, Oxidation and graphitization of diamond at low pressures, Zh. Fiz. Khim, vol.56, 1982.

D. V. Fedoseev, S. P. Vnusov, V. L. Bukhovets, and B. A. Anikin, Surface graphitization of diamond at high temperatures, Surf. Coat. Technol, vol.28, issue.2, pp.90059-90068, 1986.

G. Davies, Properties and Gowth of Diamond (INSPEC, 1994.

J. F. Prins, Ion implantation of diamond for electronics applications, Semicond. Sci. Technol, vol.18, issue.3, p.27, 2003.

F. Banhart, Irradiation effects in carbon nanostructures, Rep. Prog. Phys, vol.62, issue.8, p.1181, 1999.

, The Properties of Natural and Synthetic Diamonds, 1977.

O. P. Krivoruchko, V. I. Zaikovski, and K. I. Zamaraev, Formation of unsual liquid-like FeC particles and dynamics of their nehavior on amorphous carbon surface at 920-1170 K, Dkl. Akad. Nauk, vol.329, p.744, 1993.

M. S. Dresselhaus, G. Dresselhaus, and P. C. Eklund, Science of Fullerenes and Carbon Nanotubes, 1996.

V. L. Kutnetsov and Y. V. Butenko, Diamond phase transitions at nanoscale, Ultrananocrystalline Diamond: Synthesis, Properties and Applications, 2012.

Y. V. Butenko, S. Krishnamurthy, A. K. Chakraborty, V. L. Kuznetsov, V. R. Dhanak et al., Photoemission study of onionlike carbons produced by annealing nanodiamonds, Phys. Rev. B, vol.71, issue.7, p.75420, 2005.

D. Pech, M. Brunet, H. Durou, P. H. Huang, V. Mochalin et al., Ultra-high-power micrometre-sized supercapacitors based on onion-like carbon, Nat. Nanotechnol, vol.5, pp.651-654, 2010.

O. Shenderova, C. Jones, V. Borjanovic, S. Hens, G. Cunningham et al., Detonation nanodiamond and onion-like carbon: applications in composites, Phys. Stat. Sol. A, vol.205, issue.9, pp.2245-2251, 2008.

O. Shenderova, T. Tyler, V. Borjanovic, G. Cunningham, M. Ray et al., Nanodiamond and onion-like carbon polymer nanocomposites, Diam. Relat. Mater, vol.16, issue.9, pp.337-345, 2007.

V. L. Kutnetsov, A. L. Chuvilin, Y. V. Butenko, I. L. Malkov, and V. M. Titov, Onion-like carbon from ultradisperse diamond, Chem. Phys. Lett, vol.222, issue.4, pp.343-348, 1994.

F. Fugaciu, H. Hermann, and G. Seifert, Concentric-shell fullerenes and diamond particles: a molecular-dynamics study, Phys. Rev. B, vol.60, issue.15, pp.10711-10714, 1999.

J. Y. Raty, G. Galli, C. Bostedt, T. W. Van-buuren, and L. J. Terminello, Quantum confinement and fullerenelike surface reconstructions in nanodiamonds, Phys. Rev. Lett, vol.90, issue.3, p.37401, 2003.

V. L. Kuznetsov, I. L. Zilberberg, Y. V. Butenko, A. L. Chuvilin, and B. Segall, Theoretical study of the formation of closed curved graphite-like structures during annealing of diamond surface, J. Appl. Phys, vol.86, issue.2, p.863, 1999.

Y. V. Butenko, V. L. Kuznetsov, A. L. Chuvilin, V. N. Kolomiichuk, S. V. Stankus et al., The kinetics of the graphitization of dispersed diamonds at low temperatures, J. Appl. Phys, vol.88, issue.7, pp.4380-4388, 2000.

G. Davies and T. Evans, Graphitization of diamond at zero temperature and a high pressure, Proc. R. Soc, vol.328, pp.413-427, 1574.

D. S. Su, N. I. Maksimova, G. Mestl, V. L. Kuznetsov, V. Keller et al., Oxidative dehydrogenation of ethylbenzene to styrene over ultra-dispersed diamond and onion-like carbon, Carbon, vol.45, issue.11, pp.2145-2151, 2007.

K. Xu and Q. Xue, A new method for deaggregation of nanodiamond from explosive detonation: graphitizationoxidation method, Phys. Solid State, vol.46, issue.4, pp.649-650, 2004.

O. E. Anderson, B. L. Prasad, H. Sato, T. Enoki, Y. Hishiyama et al., Structure and electronic properties of graphite nanoparticles, Phys. Rev. B, vol.58, issue.24, pp.16387-16395, 1998.

J. Qian, C. Pantea, J. Huang, T. W. Zerda, and Y. Zhao, Graphitization of diamond powders of different sizes at high pressure-high temperature, Carbon, vol.42, pp.2691-2697, 2004.

J. Cebik, J. K. Mcdonough, F. Peerally, R. Medrano, I. Neitzel et al., Raman spectroscopy study of the nanodiamond-to-carbon onion transformation, Nanotechnology, vol.24, issue.20, p.205703, 2013.

A. Panich, A. I. Shames, N. A. Sergeev, M. Olszewski, J. K. Mcdonough et al., Nanodiamond graphitization: a magnetic resonance study, J. Phys. Cond. Matter, vol.25, issue.24, p.245303, 2013.

Z. Markovic and V. Trajkovic, Biomedical potential of the reactive oxygen species generation and quenching by fullerenes (C60), Biomaterials, vol.29, issue.26, pp.3561-3573, 2008.

K. Yang, J. Wan, S. Zhang, B. Tian, Y. Zhang et al., The influence of surface chemistry and size of nanoscale graphene oxide on photothermal therapy of cancer using ultra-low laser power, Biomaterials, vol.33, issue.7, pp.2206-2214, 2012.

C. Portet, G. Yushin, and Y. Gogotsi, Electrochemical performance of carbon onions, nanodiamonds, carbon black and multiwalled nanotubes in electrical double layer capacitors, Carbon, vol.45, issue.13, pp.2511-2518, 2007.

J. Zang, Y. Wang, L. Bian, J. Zhang, F. Meng et al., Surface modification and electrochemical behaviour of undoped Nanodiamonds, Electrochem. Acta, vol.72, pp.68-73, 2012.

G. Su, H. Zhou, Q. Mu, Y. Zhang, L. Li et al., Effective surface charge density determines the electrostatic attraction between nanoparticles and cells, J. Phys. Chem. C, vol.116, issue.8, pp.4993-4998, 2012.

Y. Y. Liu, H. Miyoshi, and M. Nakamura, Nanomedicine for drug delivery and imaging: a promising avenue for cancer therapy and diagnosis using targeted functional nanoparticles, Int. J. Cancer, vol.120, issue.12, pp.2527-2537, 2007.

A. S. Barnard, Self-assembly in nanodiamond agglutinates, J. Mater. Chem, vol.18, issue.34, pp.4038-4041, 2008.

E. D. Eidelman, V. I. Siklitsky, and L. V. Sharonova, A stable suspension of single ultrananocrystalline diamond particles, Diam. Relat. Mater, vol.14, pp.1765-1769, 2005.

E. Osawa, Recent progress and perspectives in single-digit nanodiamond, Diam. Relat. Mater, vol.16, issue.12, pp.2018-2022, 2007.

A. Pentecost, S. Gour, V. Mochalin, I. Knoke, and Y. Gogotsi, Deaggregation of nanodiamond powders using saltand sugar-assisted milling, ACS Appl. Mater. Interfaces, vol.2, issue.11, pp.3289-3294, 2010.

R. J. Hunter, Zeta Potential in Colloids Science, 1981.

T. M. Riddick, Zeta-Meter Operating Manual ZM-75, 1968.

A. V. Delgado, F. González-caballero, R. J. Hunter, L. K. Koopal, and J. Lyklema, Measurement and interpretation of electrokinetic phenomena (IUPAC technical report), Pure Appl. Chem, vol.77, issue.10, pp.1753-1805, 2005.

M. Ozawa, M. Inakuma, M. Takahashi, F. Kataoka, A. Krueger et al., Preparation and behavior of brownish, clear nanodiamond colloids, Adv. Mater, vol.19, issue.9, pp.1201-1206, 2007.

V. N. Mochalin, I. Neitzel, B. Etzold, A. M. Peterson, G. Palmese et al., Covalent incorporation of aminated nanodiamond into an epoxy polymer network, ACS Nano, vol.5, issue.9, pp.7494-7502, 2011.

N. Gibson, O. Shenderova, T. J. Luo, S. Moseenkov, V. Bondar et al., Colloidal stability of modified nanodiamond particles, Diam. Relat. Mater, vol.18, issue.4, pp.620-626, 2009.

K. Kokubo, K. Matsubayashi, H. Tategaki, H. Takada, and T. Oshima, Facile synthesis of highly water-soluble fullerenes more than half-covered by hydroxyl groups, ACS Nano, vol.2, issue.2, pp.327-333, 2008.

Y. F. Li, C. I. Hung, C. C. Li, W. Chin, B. Y. Wei et al., A gas-phase hydrophilization of carbon nanotubes by xenon excimer ultraviolet irradiation, J. Mater. Chem, vol.19, issue.37, pp.6761-6765, 2009.

L. Pospí?il, M. Gál, M. Hromadová, J. Bulícková, V. Kolivo?ka et al., Search for the form of fullerene C(60) in aqueous medium, Phys. Chem. Chem. Phys, vol.12, issue.42, pp.14095-14101, 2010.

H. A. Girard, S. Perruchas, C. Gesset, M. Chaigneau, L. Vieille et al., Electrostatic grafting of diamond nanoparticles: a versatile route to nanocrystalline diamond thin films, ACS Appl. Mater. Interfaces, vol.1, issue.12, pp.2738-2746, 2009.
URL : https://hal.archives-ouvertes.fr/cea-01807224

J. Hees, A. Kriele, and O. A. Williams, Electrostatic self-assembly of diamond nanoparticles, Chem. Phys. Lett, vol.509, issue.1-3, pp.12-15, 2011.

C. C. Li and C. L. Huang, Preparation of clear colloidal solutions of detonation nanodiamond in organic solvents, Colloids Surf. A Physicochem. Eng. Asp, vol.353, issue.1, pp.52-56, 2010.

A. I. Shames, A. M. Panich, V. Y. Osipov, A. E. Aleksenskiy, A. Y. Vul et al., Structure and magnetic properties of detonation nanodiamond chemically modified by copper, J. Appl. Phys, vol.107, issue.1, p.14318, 2010.

C. Gaillard, H. A. Girard, C. Falck, V. Paget, V. Simic et al., Peptide nucleic acid-nanodiamonds: covalent and stable conjugates for DNA targeting, RSC Adv, vol.4, issue.7, pp.3566-3572, 2014.
URL : https://hal.archives-ouvertes.fr/cea-01832084

E. Fuente, J. A. Menendez, D. Suarez, and M. A. Montes-moran, Basic surface oxides on carbon materials: a global view, Langmuir, vol.19, issue.8, pp.3505-3511, 2003.

M. A. Montes-moran, D. Suarez, J. A. Menendez, and E. Fuente, On the nature of basic sites on carbon surfaces: an overview, Carbon, vol.42, issue.7, pp.1219-1225, 2004.

C. Leon, J. M. Solar, V. Calemma, and L. R. Radovic, Evidence for the protonation of basal-plane sites on carbon, Carbon, vol.30, issue.5, p.90164, 1992.

V. L. Kuznetsov, Y. V. Butenko, A. L. Chuvilin, A. I. Romanenko, and A. V. Okotrub, Electrical resistivity of graphitized ultra-disperse diamond and onion-like carbon, Chem. Phys. Lett, vol.336, issue.5-6, pp.397-404, 2001.

S. Biniak, G. Szymanski, J. Siedlewskia, and A. Swiatkowskib, The characterization of activated carbons with oxygen and nitrogen surface groups, Carbon, vol.35, issue.12, pp.96-97, 1997.

A. Krueger, J. Stegk, Y. J. Liang, L. Lu, and G. Jarre, Biotinylated nanodiamond: simple and efficient functionalization of detonation diamond, Langmuir, vol.24, issue.8, pp.4200-4204, 2008.

V. Chakrapani, J. C. Angus, A. B. Anderson, S. D. Wolter, B. R. Stoner et al., Charge transfer equilibria between diamond and an aqueous oxygen electrochemical redox couple, Science, vol.318, issue.5855, pp.1424-1430, 2007.

T. Kondo, I. Neitzel, V. N. Mochalin, J. Urai, M. Yuasa et al., Electrical conductivity of thermally hydrogenated nanodiamond powders, J. Appl. Phys, vol.113, issue.21, p.214307, 2013.

K. K. Liu, C. C. Wang, C. L. Cheng, and J. I. Chao, Endocytic carboxylated nanodiamond for the labeling and tracking of cell division and differentiation in cancer and stem cells, Biomaterials, vol.30, issue.26, pp.4249-4259, 2009.

Y. Yuan, X. Wang, G. Jia, J. H. Liu, T. Wang et al., Pulmonary toxicity and translocation of nanodiamonds in mice, Diam. Relat. Mater, vol.19, issue.4, pp.291-299, 2009.

N. Mohan, C. S. Chen, H. H. Hsieh, Y. C. Wu, and H. C. Chang, In vivo imaging and toxicity assessments of fluorescent nanodiamonds in Caenorhabditis elegans, Nano Lett, vol.10, issue.9, pp.3692-3699, 2010.

V. Vaijayanthimala, P. Y. Cheng, S. H. Yeh, K. K. Liu, C. H. Hsiao et al., The long-term stability and biocompatibility of fluorescent nanodiamond as an in vivo contrast agent, Biomaterials, vol.33, issue.31, pp.7794-7802, 2012.

S. J. Yu, M. W. Kang, H. C. Chang, K. M. Chen, and Y. C. Yu, Bright fluorescent nanodiamonds: no photobleaching and low cytotoxicity, J. Am. Chem. Soc, vol.127, issue.50, pp.17604-17605, 2005.

Y. Xing, W. Xiong, L. Zhu, E. Osawa, S. Hussin et al., DNA damage in embryonic stem cells caused by nanodiamonds, ACS Nano, vol.5, issue.3, pp.2376-2384, 2011.

J. A. Sergent, V. Paget, and S. Chevillard, Toxicity and genotoxicity of nano-SiO2 on human epithelial intestinal HT-29 cell line, Ann. Occup. Hyg, vol.56, issue.5, pp.622-630, 2012.

L. J. Mah, A. El-osta, and T. C. Karagiannis, gammaH2AX: a sensitive molecular marker of DNA damage and repair, Leukemia, vol.24, issue.4, pp.679-686, 2010.

A. M. Schrand, J. B. Lin, S. C. Hens, and S. M. Hussain, Temporal and mechanistic tracking of cellular uptake dynamics with novel surface fluorophore-bound nanodiamonds, Nanoscale, vol.3, issue.2, pp.435-445, 2011.

I. P. Chang, K. C. Hwang, and C. S. Chiang, Preparation of fluorescent magnetic nanodiamonds and cellular imaging, J. Am. Chem. Soc, vol.130, issue.46, pp.15476-15481, 2008.

U. Maitra, A. Jain, S. J. George, and C. N. Rao, Tunable fluorescence in chromophore-functionalized nanodiamond induced by energy transfer, Nanoscale, vol.3, issue.8, pp.3192-3197, 2011.

Q. Zhang, V. N. Mochalin, I. Neitzel, I. Y. Knoke, J. Han et al., Fluorescent PLLA-nanodiamond composites for bone tissue engineering, Biomaterials, vol.32, issue.1, pp.87-94, 2011.

X. Q. Zhang, M. Chen, R. Lam, X. Y. Xu, E. Osawa et al., Polymer-functionalized nanodiamond platforms as vehicles for gene delivery, ACS Nano, vol.3, issue.9, pp.2609-2616, 2009.

H. D. Wang, Q. Yang, C. H. Niu, and I. Badea, Protein-modified nanodiamond particles for layer-by-layer assembly, Diam. Relat. Mater, vol.20, issue.8, pp.1193-1198, 2011.

Y. K. Tzeng, O. Faklaris, B. M. Chang, Y. Kuo, J. H. Hsu et al., Superresolution imaging of albuminconjugated fluorescent nanodiamonds in cells by stimulated emission depletion, Angew Chem. Int. Ed Eng, vol.50, issue.10, pp.2262-2265, 2011.

C. Y. Cheng, E. Perevedentseva, J. S. Tu, P. H. Chung, C. L. Cheng et al., Direct and in vitro observation of growth hormone receptor molecules in A549 human lung epithelial cells by nanodiamond labeling, Appl. Phys. Lett, vol.90, issue.16, p.163903, 2007.

D. T. Tran, V. Vermeeren, L. Grieten, S. Wenmackers, P. Wagner et al., Nanocrystalline diamond impedimetric aptasensor for the label-free detection of human IgE, Biosens. Bioelectron, vol.26, issue.6, pp.2987-2993, 2011.

A. H. Smith, E. M. Robinson, X. Q. Zhang, E. K. Chow, Y. Lin et al., Triggered release of therapeutic antibodies from nanodiamond complexes, Nanoscale, vol.3, issue.7, p.2844, 2011.

A. Barras, J. Lyskawa, S. Szunerits, P. Woisel, and R. Boukherroub, Direct functionalization of nanodiamond particles using dopamine derivatives, Langmuir, vol.27, pp.12451-12457, 2011.

R. A. Shimkunas, E. Robinson, R. Lam, S. Lu, X. Xu et al., Nanodiamondinsulin complexes as pH-dependent protein delivery vehicles, Biomaterials, vol.30, issue.29, pp.5720-5728, 2009.

E. Perevedentseva, P. J. Cai, Y. C. Chiu, and C. L. Cheng, Characterizing protein activities on the lysozyme and nanodiamond complex prepared for bio applications, Langmuir, vol.27, issue.3, pp.1085-1091, 2011.

T. T. Nguyen, H. C. Chang, and V. W. Wu, Adsorption and hydrolytic activity of lysozyme on diamond nanocrystallites, Diam. Relat. Mater, vol.16, issue.4-7, pp.872-876, 2007.

V. S. Bondar, I. O. Pozdnyakova, and A. P. Puzyr, Applications of nanodiamonds for separation and purification of proteins, Phys. Solid State, vol.46, issue.4, pp.758-760, 2004.

R. Lam, M. Chen, E. Pierstorff, H. Huang, E. Osawa et al., Nanodiamond-embedded microfilm devices for localized chemotherapeutic elution, ACS Nano, vol.2, issue.10, pp.2095-2102, 2008.

H. Huang, E. Pierstorff, E. Osawa, and D. Ho, Active nanodiamond hydrogels for chemotherapeutic delivery, Nano Lett, vol.7, issue.11, pp.3305-3314, 2007.

M. Chen, X. Q. Zhang, H. B. Man, R. Lam, E. K. Chow et al., Nanodiamond vectors functionalized with polyethylenimine for siRNA delivery, J. Phys. Chem. Lett, vol.1, issue.21, pp.3087-3095, 2010.

H. Huang, E. Pierstorff, E. Osawa, and D. Ho, Protein-mediated assembly of nanodiamond hydrogels into a biocompatible and biofunctional multilayer nanofilm, ACS Nano, vol.2, issue.2, pp.203-212, 2008.

J. Tisler, R. Reuter, A. Lammle, F. Jelezko, G. Balasubramanian et al., Highly efficient FRET from single NV center in nanodiamonds to single organic molecule, ACS Nano, vol.5, issue.10, pp.7893-7898, 2011.

N. Mohan, Y. K. Tzeng, L. Yang, Y. Y. Chen, Y. Y. Hui et al., Sub-20-nm fluorescent nanodiamonds as photostable biolabels and fluorescence resonance energy transfer donors, Adv. Mater, vol.22, issue.7, pp.843-847, 2010.

V. Grichko, T. Tyler, V. I. Grishko, and O. Shenderova, Nanodiamond particles forming photonic structures, Nanotechnology, vol.19, issue.22, p.225201, 2008.

O. Faklaris, V. Joshi, T. Irinopoulou, P. Tauc, M. Sennour et al., Photoluminescent diamond nanoparticles for cell labeling: study of the uptake mechanism in mammalian cells, ACS Nano, vol.3, issue.12, pp.3955-3962, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00401798

L. P. Mcguinness, Y. Yan, A. Stacey, D. A. Simpson, L. T. Hall et al., Quantum measurement and orientation tracking of fluorescent nanodiamonds inside living cells, Nat. Nanotech, vol.6, pp.358-363, 2011.

S. C. Hens, G. Cunningham, T. Tyler, S. Moseenkov, V. Kuznetsov et al., Nanodiamond bioconjugate probes and their collection by electrophoresis, Diam. Relat. Mater, vol.17, issue.11, pp.1858-1866, 2008.

V. N. Mochalin and Y. Gogotsi, Wet chemistry route to hydrophobic blue fluorescent nanodiamond, J. Am. Chem. Soc, vol.131, issue.13, pp.4594-4595, 2009.

L. M. Manus, D. J. Mastarone, E. A. Waters, X. Q. Zhang, E. A. Schultz-sikma et al., Gd(III)-nanodiamond conjugates for MRI contrast enhancement, Nano Lett, vol.10, issue.2, pp.484-489, 2010.

S. S. Tinkle, Maximizing safe design of engineered nanomaterials: the NIH and NIEHS research perspective, Wiley Interdiscip Rev Nanomed Nanobiotechnol, vol.2, issue.1, pp.88-98, 2010.

D. B. Warheit, P. J. Borm, C. Hennes, and J. Lademann, Testing strategies to establish the safety of nanomaterials: conclusions of an ECETOC workshop, Inhal Toxicol, vol.19, issue.8, pp.631-643, 2007.