. Je, S. Graebner, G. W. Jin, J. A. Kammlott, &. Herb et al., Large anisotropic thermal conductivity in synthetic diamond films, Nature, vol.359, pp.401-403, 1992.

. Jpf and . Sellschop, , 1979.

P. Hess, The Mechanical properties of various chemical vapor deposition diamond structures compared to the ideal single crystal, J Appl Phys, vol.111, issue.5, p.51101, 2012.

. Yu, Y. Borzdov, I. Kupriyanov, V. Gusev, A. Khokhryakov et al., HPHT synthesis of diamond with high nitrogen content from an Fe3N-C system, Diam and Relat Mater, vol.11, pp.1863-1870, 2002.

. Fp, H. T. Bundy, H. M. Hall, R. H. Strong, and . Wentorf, Man-made Diamonds, nature, vol.176, pp.51-55, 1955.

. Rf, J. T. Davis, G. Glass, K. J. Lucovski, and . Bachman, Growth, characterization and device development in monocrystalline diamond films, 1987.

Q. Liang, Recent advances in high-growth rate single crystal CVD diamond, Diam and Relat Mater, vol.18, pp.698-703, 2009.

. Jj-gracio, . Qh-fan, and . Madaleno, Diamond growth by chemical vapour deposition, J. Phys. D: Appl. Phys, vol.43, 2010.

. Rs and . Balmer, Chemical vapour deposition synthetic diamond: materials, technology and applications, Journal of Physics: Condensed Matter, vol.21, p.364221, 2009.

S. Koiszumi, T. Teraji, and H. Kanda, Phosphorus-doped chemical vapor deposition of diamond, Diam and Relat Mater, vol.9, pp.935-940, 2000.

M. Oa-williams, M. Nesldek, S. Daenen, A. Michaelson, E. Hoffman et al., Growth, electronic properties and application of nanodiamond, Diam and Relat Mater, vol.17, pp.1080-1088, 2008.

R. Kalsih, Doping of Diamond, Carbon, issue.5, pp.781-785, 1999.

E. Gheeraert, P. Gonon, A. Deneuville, L. Abello, and G. Lucazeau, effect of boron incorporation on the quality of MPCVD diamond films, Diam and Relat Mater, vol.2, pp.5-7, 1993.

T. Klein, P. Achatz, J. Kacmarcik, C. Marcenat, J. Marcus et al., Metal-insulator transition and superconductivity in boron-doped diamond, Phys Rev B, vol.165313, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00165162

W. Adam, E. Berdermann, P. Bergonzo, W. De, R. Boer et al., The development of diamond tracking detectors for the LHC, Nuc. Inst. and Meth. in Phys. Res, Section A, vol.514, pp.79-86, 2003.

P. Bergonzo, A. Bambilla, D. Tromson, C. Mer, B. Guizard et al., CVD diamond for nuclear detections applications, Nuc. Inst. and Meth. in Phys. Res, Section A, vol.476, issue.3, pp.694-700, 2002.

P. Bergonzo, A. Brambilla, D. Tromson, C. Mer, C. Hordequin et al., Diamond as a tool for synchrotron radiation monitoring: beam position, profile, and temporal distribution, Diam. and Relat. Mater, vol.9, pp.960-964, 2000.

E. Vanhove, Phys. Status Solidi, vol.204, issue.9, pp.2931-2939, 2007.

A. , Diam. Relat. Mater, vol.12, pp.166-170, 2003.

L. Tang, Biomaterials, vol.16, issue.6, pp.483-491, 1995.

P. Ariano, Diam. Relat. Mater, vol.14, issue.3-7, pp.669-674, 2005.

C. G. Specht, Biomaterials, vol.25, issue.18, pp.4073-4081, 2004.

M. , J. Nanomater, vol.894352, 2008.

W. Okrój, Diam. Relat. Mater, vol.15, issue.10, pp.3428-3463, 2006.

A. A. Rodrigues, Diam. Relat. Mater, vol.19, issue.10, pp.1300-1306, 2010.

P. Bergonzo, IRBM, vol.32, pp.91-94, 2011.

T. Livache, J. Pharm. Biomed. Anal, vol.32, issue.4-5, pp.687-696, 2003.

P. Sonthalia, Anal. Chim. Acta, vol.522, issue.1, pp.9898-9906, 2004.

A. Bongrain, Langmuir, vol.27, issue.19, pp.12226-12260, 2011.

E. V. Jacques-de-sanoit, , 2013.

R. G. Hyde, C. M. Welch, and C. E. Banks, Anal. Sci, vol.21, issue.12, pp.1421-1430, 2005.

M. C. Granger, Anal. Chim. Acta, vol.397, issue.1-3, pp.145-161, 1999.

M. Hupert, Diam. Relat. Mater, vol.12, pp.1940-1949, 2003.

T. N. Rao, J. Electrochem. Soc, vol.148, issue.3, pp.112-117, 2001.

C. Provent, Electrochim. Acta, vol.49, pp.3737-3744, 2004.

A. Chatterjee, Diam. Relat. Mater, vol.11, issue.3-6, pp.646-650, 2002.

J. S. Foord, Phys. Chem. Chem. Phys, vol.7, pp.2787-2792, 2005.

M. Rievaj, Sensors Actuators B. Chem, vol.181, pp.294-300, 2013.

M. Wei, Microchim. Acta, vol.181, pp.121-127, 2014.

L. Codognoto, Diam. Relat. Mater, vol.11, issue.9, pp.1670-1675, 2002.

E. Fortin, Bioelectrochemistry, vol.63, issue.1-2, pp.303-309, 2004.

K. Kalcher, Sensors Actuators B. Chem, vol.194, pp.332-342, 2014.

M. D. Koppang, Anal. Biochem, vol.71, issue.16, pp.1188-1195, 1999.

J. De-sanoit, Electrochim. Acta, vol.54, issue.24, pp.5688-5693, 2009.

L. Svorc, Diam. Relat. Mater, vol.42, pp.1-7, 2014.

B. Sarada, Anal. Chem, vol.72, issue.7, pp.1632-1638, 2000.

M. Cristina, Sensors Actuators B. Chem, vol.188, pp.263-270, 2013.

P. U. Arumugam, Appl. Phys. Lett, vol.102, p.253107, 2013.

S. Siddiqui, Biosens. Bioelectron, vol.35, issue.1, pp.284-290, 2012.

R. Andreozzi, Catal. Letters, vol.53, pp.51-59, 1999.

J. Iniesta, Electrochim. Acta, vol.46, pp.3573-3578, 2001.

M. A. Rodrigo, J. Electrochem. Soc, vol.148, issue.5, pp.60-64, 2001.

P. Cañizares, J. Electrochem. Soc, vol.154, issue.11, pp.165-171, 2007.

A. Kraft, J. Hazard. Mater, vol.103, issue.3, pp.247-261, 2003.

B. Boye, Electrochim. Acta, vol.51, issue.14, pp.2872-2880, 2006.

A. Perret, Diam. Relat. Mater, vol.8, pp.820-823, 1999.

C. Lévy-clément, Diam. Relat. Mater, vol.12, issue.3-7, pp.606-612, 2003.

T. Furuta, Diam. Relat. Mater, vol.13, pp.2016-2019, 2004.

A. Cano, Chem. Eng. J, pp.463-469, 2012.

A. Cano, Electrochem. commun, vol.13, issue.11, pp.1268-1270, 2011.

C. Agnès, IOP Conf. Ser. Mater. Sci. Eng, vol.16, issue.1, pp.3728-3762, 2003.

N. Yang, Angew. Chem. Int. Ed. Engl, vol.47, issue.28, pp.4494-4501, 2007.

R. J. Hamers, Diam. Relat. Mater, vol.20, issue.5-6, pp.1040-1050, 2011.

J. Wang, Diam. Relat. Mater, vol.15, issue.2-3, pp.279-284, 2006.

P. Villalba, Mater. Sci. Eng. C, vol.31, issue.5, pp.1115-1120, 2011.

H. Olivia, Electrochim. Acta, vol.49, issue.13, pp.2069-2076, 2004.

A. , Nat. Mater, vol.3, issue.10, pp.5837-5879, 2004.

H. Kawarada-;-y.-un, Surf. Sci. Rep, vol.26, issue.7, pp.1293-1296, 1996.

X. Gao, J. Phys. Chem. C, vol.112, issue.7, pp.2487-2491, 2008.

P. Strobel, Nature, vol.430, pp.242-244, 2004.

D. Petrini, J. Phys. Chem. C, vol.111, issue.37, pp.13804-13812, 2007.

H. Kawarada, Phys. Status Solidi, vol.208, issue.9, 2005.

D. Zhu, Nat. Mater, vol.12, issue.6, pp.1-6, 2013.

H. Kawarada, Phys. Status Solidi, vol.185, issue.1, pp.79-83, 2001.

K. Song, Jpn. J. Appl. Phys, vol.43, issue.6B, pp.814-817, 2004.

K. Song, Phys. Rev. E, vol.74, issue.4, p.41919, 2006.

S. Kuga, J. Am. Chem. Soc, vol.130, issue.40, pp.13251-63, 2008.

A. R. Ruslinda, Biosens. Bioelectron, vol.40, issue.1, pp.277-282, 2013.

O. Auciello, IEE Microw. Mag, pp.61-75, 2007.

A. Bongrain, J. Micromechanics Microengineering, vol.19, p.74015, 2009.

A. Bongrain, Phys. Status Solidi, vol.2083, issue.9, pp.2078-2083, 2010.

R. Manai, Biosens. Bioelectron, vol.60, pp.311-317, 2014.

C. Blin, Adv. Opt. Mater, vol.1, pp.963-970, 2013.

E. Chevallier, Sensors Actuators B. Chem, vol.154, issue.2, pp.238-244, 2011.

E. Chevallier, Sensors Actuators B. Chem, vol.151, issue.1, pp.191-197, 2010.

J. G. Rodríguez-madrid, Sensors Actuators A. Phys, vol.189, pp.364-369, 2013.

V. Mortet, O. A. Williams, and K. Haenen, Phys. Status Solidi, vol.205, issue.5, pp.1009-1020, 2008.

S. R. Mailley and F. Omnes, , 2010.

. Mb, J. M. Ahrens, M. B. Li, D. N. Orger, A. F. Robson et al., Brain-wide neuronal dynamics during motor adaptation in zebrafish, Nature, vol.485, pp.471-477, 2012.

R. Homma, L. Baker, O. Jin, A. Garaschuk, L. B. Konnerth et al., Widefield and two-photon imaging of brain activity with voltage-and calcium-sensitive dyes, Phil. Trans. R. Soc. B, 2009.
URL : https://hal.archives-ouvertes.fr/inserm-00515416

Y. L. Chasseur, S. Dufour, G. Lavertu, C. Bories, M. Deschênes et al., A microprobe for parallel optical and electrical recordings from single neurons in vivo, Nature Methods, pp.319-325, 2011.

. Ar, M. Houwelin, and . Brech, Behavioural report of single neuron stimulation in somatosen-sory cortex, Nature, vol.451, pp.65-68, 2007.

. Dj, U. Bakkum, M. Frey, T. L. Radivojevic, J. Russell et al., Tracking axonal action potential propagation on a high-density microelectrode array across hundreds of sites, Nat. Comm, 2013.

. Al-benabid, C. Pollak, and . Gervason, Long-term suppression of tremor by chronic stimulation of the ventral intermediate thalamic nucleus, Lancet, vol.337, pp.403-406, 1991.

M. I. Hariz, P. Blomstedt, and L. Zrinzo, Deep brain stimulation between 1947 and 1987: the untold story, Neurosurgical Focus, vol.29, issue.2, p.1, 1947.

. Mm, M. Lanotte, B. Rizzone, and . Bergamasco, Deep brain stimulation of the subthalamic nucleus: anatomical, neurophysiological, and outcome correlations with the effects of stimulation, J Neurol Neurosurg Psychiatry, vol.72, pp.53-58, 2002.

E. D. Keefer, B. R. Botterman, M. I. Romero, A. F. Rossi, and G. W. Gross, Carbon nanotube coating improves neuronal recordings, Acta Neurochir Suppl, vol.106, pp.337-341, 2010.

R. Van-den-brand, J. Heutschi, Q. Barraud, J. Digiovanna, K. Bartholdi et al., Restoring voluntary control of locomotion after paralyzing spinal cord injury, Science, vol.336, pp.1182-1185, 2012.

N. Dominici, U. Keller, H. Vallery, L. Friedli, R. Van-den et al., Versatile robotic interface to evaluate, enable and train locomotion and balance after neuromotor disorders, Nature Medecine, 2012.

M. Heim, S. Rousseau, . Reculusa, C. Urbanova, . Mazzocco et al., Combined macro-mesoporous microelectrode arrays for low-noise extracellular recording of neural networks, J Neurophysiol, vol.108, pp.1793-1803, 2012.

N. A. Kotov, J. O. Winter, . Ip, E. Clements, B. P. Jan et al., Nanomaterials for Neural Interfaces, vol.21, pp.1-35, 2009.

G. Baranauskas, E. Maggiolini, E. Castagnola, A. Ansaldo, A. Mazzoni et al., Carbon nanotube composite coating of neural microelectrodes preferentially improves the multiunit signal to noise ratio, J. Neural Eng, vol.8, 2011.

V. Lovat, D. Pantarotto, L. Lagostena, B. Cacciari, M. Grandolfo et al., Carbon nanotube substrates boost neuronal electrical signaling, Nano letters, vol.5, issue.6, pp.1107-1110, 2005.

S. Venkatraman, J. Hendricks, Z. A. King, A. J. Sereno, S. Richardson-burns et al., Vitro and In Vivo Evaluation of PEDOT Microelectrodes for Neural Stimulation and Recording, IEEE Transactions On Neural Systems And Rehabilitation Engineering, pp.307-315, 2011.

S. J. Wilks, S. M. Richardson-burns, J. L. Hendricks, D. C. Martin, and K. J. Otto, Poly(3,4-ethylenedioxythiophene) as a micro-neural interface material for electrostimulation, vol.2, 2009.

. Sf, J. Cogan, T. D. Ehrlich, A. Plante, D. Smirnov et al., Sputtered iridium oxide films for neural stimulation electrodes, Jour. Biomed. Mater. Res Part B, issue.2, pp.353-361, 2009.

S. Gawad, M. Giugliano, M. Heuschkel, B. Wessling, H. Markram et al.,

, Substrate arrays of iridium oxide microelectrodes for in vitro neuronal interfacing, frontiers in neural engineering, vol.2, 2009.

G. Lind, C. E. Linsmeier, and . Schouenborg, The density difference between tissue and neural probes is a key factor for glial scarring, Sci. Rep, vol.3, p.2942

. Vs, P. A. Polikov, W. M. Tresco, and . Reichert, Response of brain tissue to chronically implanted neural electrodes, Journal of Neuroscience Methods, vol.148, pp.1-18, 2005.

Y. Zhong and R. V. Bellamkonda, Biomaterials for the central nervous system, J. R. Soc. Interface, vol.5, pp.957-975, 2008.

. Sf, A. A. Cogan, W. F. Guzeliam, T. G. Agnew, B. Yuen-douglas et al., Over-pulsing degrades activated iridium oxide films used for intracortical neural stimulation, Journal of Neuroscience Methods, vol.137, pp.141-150, 2004.

L. Bareket-keren and Y. Hanein, Carbon nanotube-based multi electrode arrays for neuronal interfacing: progress and prospects, frontiers in neural circuit, p.6, 2012.

. Rw, D. R. Griffith, and . Humphrey, Long-term gliosis around chronically implanted platinum electrodes in the Rhesus macaque motor cortex, Neurosci Lett, vol.406, issue.1-2, pp.81-87, 2006.

. Es, S. Ereifej, G. Khan, J. Newaz, G. W. Zhang et al., Comparative assessment of iridium oxide and platinum alloy wires using an in vitro glial scar assay, Biomed Microdevices, vol.15, pp.917-924, 2013.

S. Chen and M. G. Allen, Extracellular matrix-based materials for neural interfacing, MRS Bulletin, vol.37, pp.606-613, 2012.

A. Mazzatenta, M. Giugliano, S. Campidelli, L. Gambazzi, L. Businaro et al., Interfacing neurons with carbon nanotubes: Electrical signal transfer and synaptic stimulation in cultured brain circuits, The Journal of Neuroscience, vol.27, pp.6931-6936, 2007.

. Ca-poland, . Duffin, . Kinloch, W. Maynard, and . Wallaceet, Carbon nanotubes introduced into the abdominal cavity of mice showasbestos-like pathogenicity in a pilot study, Nature Nanotechnology, vol.3, pp.423-428, 2008.

. Lt-hall, High spatial and temporal resolution wide-field imaging of neuron activity using quantum NV-diamond, Sci. Rep, vol.2, p.401, 2012.

G. Buzsáki, C. A. Anastassiou, and C. Koch, The origin of extracellular fields and currents EEG, ECoG, LFP and spikes, Nature Review Neuroscience, vol.3, pp.407-427, 2012.

. Mm and . Heinricher, Principles of extracellular single unit recodring in Microelectrode recording in movement disorder surgery Zvi Israel, 2011.

T. Schwartz, The thermodynamic functions of membrane physiology, pp.47-95, 1971.

. Dc and . Chang, Dependence of cellular potential on ionic concentrations, Biophysical journal, vol.43, pp.149-156, 1983.

N. Joye, A. Schmid, and Y. Leblebici, Electrical modeling of the cell-electrode interface for recording neural activity from high-density microelectrode arrays, Neurocomputing, vol.73, pp.250-259, 2009.

V. Thakore, P. Molnar, and J. J. Hickman, An Optimization-Based Study of Equivalent Circuit Models for Representing Recordings at the Neuron-Electrode Interface, Transactions on biomedical engineering, vol.59, issue.8, 2012.

S. F. Cogan, Neural Stimulation and Recording electrodes, Annu. Rev. Biomed. Eng, vol.10, pp.275-309, 2008.

. Mlav, M. A. Heien, R. M. Johnson, and . Wightman, Resolving Neurotransmitters Detected by Fast-Scan Cyclic Voltammetry, Analytical chemistry, vol.76, pp.5697-5704, 2004.

H. Ott, Noise Reduction techniques in electronic systems, p.251

J. Neuburger, T. Lenarz, A. Lesinski-schiedat, and A. , Buchner Spontaneous increases in impedance following cochlear implantation: suspected causes and management, Int J Audiol, vol.48, issue.5, pp.233-239, 2009.

S. Gosso, A. Marcantoni, M. Turturici, A. Pasquarelli, E. Carbone et al., Multipurpose nanocrystalline boron-doped diamond MEAs for amperometric, potentiometric and pH recordings from excitable cells MEA meeting proceedings, pp.323-324, 2012.

V. Paget, J. A. Sergent, R. Grall, S. Altmeyer-morel, H. A. Girard et al., Carboxylated nanodiamonds are neither cytotoxic nor genotoxic on liver, kidney, intestine and lung human cell lines, Nanotoxicology, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01862308

E. Perevedentseva, Y. C. Lin, M. Jani, and C. L. , Cheng Biomedical applications of nanodiamonds in imaging and therapy, Nanomedicine, vol.8, issue.12, pp.2041-2060, 2013.

A. Thalhammer, R. J. Edgington, L. A. Cingolani, R. Schoepfer, and R. B. Jackman, The use of nanodiamond monolayer coatings to promote the formation of functional neuronal networks, Biomaterials, vol.31, pp.2097-2104, 2010.

P. W. May, E. M. Regan, A. Taylor, J. Uney, A. D. Dick et al., Spatially controlling neuronal adhesion on CVD diamond, Diam and Relat Mater, vol.23, pp.100-104, 2012.

A. Bendali, C. Agnès, S. Meffert, V. Forster, A. Bongrain et al., Distinctive Glial and Neuronal Interfacing on Nanocrystalline Diamond, p.92562, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01344708

J. M. Halpern, S. Xie, G. P. Sutton, B. T. Higashikubo, C. A. Chestek et al., Diamond electrodes for neurodynamic studies in Aplysia californica, Diam and Relat Mater, vol.15, pp.183-187, 2006.

J. Park, J. J. Galligan, G. D. Fink, and G. M. Swain, In Vitro Continuous Amperometry with a Diamond Microelectrode Coupled with Video Microscopy for Simultaneously Monitoring Endogenous Norepinephrine and Its Effect on the Contractile Response of a Rat Mesenteric Artery, Anal. Chem, vol.78, pp.6756-6764, 2006.

A. Suzuki, T. A. Ivandini, K. Yoshimi, A. Fujishima, G. Oyama et al., Fabrication, Characterization, and Application of Boron-Doped Diamond Microelectrodes for in Vivo Dopamine Detection, Anal. Chem, vol.79, pp.8608-8615, 2007.

M. Pagels, C. E. Hall, N. S. Lawrence, T. J. Meredith, and . Jones, All-Diamond Microelectrode Array Device, Anal. Chem, vol.77, pp.3705-3708, 2005.

K. Peckova and . Barek, Boron Doped Diamond Microelectrodes and Microelectrode Arrays in Organic Electrochemistry Curr, Org. electrochem, vol.15, issue.17, pp.3014-3028, 2011.

V. Carabelli, S. Gosso, A. Marcantoni, Y. Xu, E. Colombo et al., Nanocrystalline diamond microelectrode arrays fabricated on sapphire technology for high-time resolution of quantal catecholamine secretion from chromaffin cells, Biosensors and Bioelectronics, vol.26, pp.92-98, 2010.

. Kl, W. P. Soh, J. L. Kang, S. Davidson, Y. M. Basu et al., Diamond-derived microelectrodes array for electrochemical analysis, Diam and Relat Mater, vol.13, 2004.

W. Smirnov, N. Yang, R. Hoffmann, J. Hees, H. Obloh et al., Integrated All-Diamond Ultramicroelectrode Arrays: Optimization of Faradaic and Capacitive Currents, Anal. Chem, vol.83, pp.7438-7443

R. Kiran, E. Scorsone, P. Mailley, and P. Bergonzo, Quasi-real time quantification of uric acid in urine using boron doped diamond microelectrode with in situ cleaning, Anal. Chem, vol.84, pp.10207-10213, 2012.

H. Y. Chan, D. M. Aslam, J. A. Wiler, and B. Casey, A Novel Diamond Microprobe for NeuroChemical and -Electrical Recording in Neural Prosthesis, JMEMS, issue.3, pp.511-521, 2009.

. Mw, D. M. Varney, A. Aslam, H. Y. Janoudi, D. H. Chan et al., Biosensors Including Neural Microelectrode-Arrays, issue.1, pp.118-133, 2011.

R. Kiran, L. Rousseau, G. Lissorgues, E. Scorsone, A. Bongraink et al., Multichannel Boron Doped Nanocrystalline Diamond Ultramicroelectrode Arrays: Design, Fabrication and Characterization, Sensors, vol.12, pp.7669-7681, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02434398

C. Hébert, J. Warnking, A. Depaulis, D. Eon, P. Mailley et al., Microfabracition characterization and in vivo MRI compatibility of all diamond microelectrode array for neural interfacing

C. Hébert, E. Scorsone, A. Bendali, R. Kiran, M. Cottance et al., Boron doped Diamond Biotechnology: from sensors to neurointerfaces, 2014.

K. Ganesan, D. J. Garrett, A. Ahnood, M. N. Shivdasani, W. Tong et al., An alldiamond, hermetic electrical feedthrough array for a retinal prosthesis, Biomaterials, vol.35, pp.908-915, 2014.

P. Bergonzo, A. Bongrain, E. Scorsone, A. Bendali, L. Rousseau et al., Diamond-on-polymer microelectrode arrays fabricated using a chemical release transfer process, Micromechanical Systems, vol.20, issue.4, pp.867-875, 2011.

. Ae, D. M. Hess, H. B. Sabens, C. A. Martin, and . Zorman, Diamond-on-Polymer Microelectrode Arrays Fabricated Using a Chemical Release Transfer Process, JMEMS, vol.20, issue.4, pp.867-875, 2011.

E. Scorsone, S. Saada, J. C. Arnault, and P. Bergonzo, Journal of Applied Physics, vol.106, p.14908, 2009.

. Dh, J. Kim, and . Viventi, Dissolvable films of silk fibroin for ultrathin conformal biointegrated electronics, Nature material, issue.9, pp.511-517, 2010.

J. Sommerhalder, B. Rappaz, R. De-haller, A. P. Fornos, A. B. Safran et al., Vision Res, vol.44, pp.1693-1706, 2004.

M. Djilas, C. Oles, H. Lorach, A. Bendali, J. Degardin et al., Three-dimensional electrode arrays for retinal prostheses: modeling, geometry optimization and experimental validation, J Neural Eng, vol.8, p.46020, 2011.

T. Watanabe, T. K. Shimizu, Y. Tateyama, Y. Kim, M. Kawai et al., Giant electric doublelayer capacitance of heavily boron-doped diamond electrode

K. Yoshimi, Y. Naya, N. Mitani, T. Kato, and M. Inoue, Shihoko Natori, et al Phasic reward responses in the monkey striatum as detected by voltammetry with diamond microelectrodes, Neuroscience Research, vol.71, pp.49-62, 2011.

V. Maybeck, R. Edgington, A. Bongrain, J. O. Welch, E. Scorsone et al., Boron-doped nanocrystalline diamond microelectrode arrays monitor cardiac action potentials, Adv Healthc Mater, vol.3, issue.2, pp.283-292, 2014.
URL : https://hal.archives-ouvertes.fr/cea-01841315

E. Zrenner, K. U. Bartz-schmidt, H. Benav, and D. Besch, Bruckmann A et al Subretinal electronic chips allow blind patients to read letters and combine them to words, Proc Biol Sci, vol.278, pp.1489-1497, 2011.

W. Janssen, S. Faby, and E. Gheeraert, Bottom-up fabrication of diamond nanowires arrays, Diam Relat Mater, vol.20, issue.5-6, pp.779-81, 2011.

W. Smirnov, A. Kriele, N. Yang, and C. E. Nebel, Aligned diamond nanowires: Fabrication and characterization for advanced applications in bio-and electrochemistry, Diam Relat Mater, vol.19, issue.2-3, pp.186-195, 2010.

H. A. Mehedi, J. C. Arnault, D. Eon, C. Hébert, C. D. Omnes et al., Etching mechanism of diamond by Ni nanoparticles for fabrication of nanopores, Carbon, pp.59-448, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00854585

W. Smirnov, J. J. Hess, D. Brink, W. M. Sebert, A. Kriele et al., Anisotropic etching of diamond by molten ni particles, Appl Phys Lett, 2010.

H. Kato, J. Hess, R. Hoffmann, M. Wolfer, N. Yang et al., Diamond foam electrodes for electrochemical applications, Electrochem Com, issue.33, pp.88-91, 2013.

C. Hébert, J. Mazellier, E. Scorsone, M. Mermoux, and P. Bergonzo, Bossting the electrochemical properties of diamond using a vertically aligned CNT scaffold, vol.71, pp.27-33, 2014.

H. Zanin, . May, . Dj, D. Firmin, S. M. Plana et al., ACS Appl Mater Interfaces, vol.6, issue.2, pp.990-995, 201422.