Skip to Main content Skip to Navigation
Journal articles

Switching polarity of oxidized detonation diamond nanoparticles on substrates

Stepan Stehlik 1, * Tristan Petit 2 Hugues Girard 2 Jean-Charles Arnault 2 Alexander Kromka 1 Bohuslav Rezek 1
* Corresponding author
2 LCD-LIST - Laboratoire Capteurs Diamant
DM2I - Département Métrologie Instrumentation & Information : DRT/LIST/DM2I
Abstract : Evaluation of diamond nanoparticles (DNPs) electrical potential under ambient environment is important for their application in electronics as well as sensors and biology. Here we use a novel methodology for characterization of nanoparticles based on recording of their electrical potential as a function of their size by two-pass Kelvin force microscopy (KFM). We study thermally oxidized detonation DNPs of 5nm nominal size. The nanoparticles were deposited from diluted water solutions on a Si substrate half coated with Au. The KFM using conductive Si tip resolved characteristic negative potential differences of 10-60mV on nanoparticles versus the substrate. When negative bias voltage to the KFM tip (-4V) is applied during the topography acquisition (the first pass), subsequent potential measurement (the second pass) shows inversion of nanoparticles potential contrast. The same effects were observed also in the case of 20nm colloidal Au nanoparticles. This effect is reversible and it is attributed to a charge retention in (or on) the nanoparticles.
Complete list of metadatas
Contributor : Bruno Savelli <>
Submitted on : Friday, June 15, 2018 - 3:28:41 PM
Last modification on : Wednesday, November 18, 2020 - 7:20:09 PM

Links full text





Stepan Stehlik, Tristan Petit, Hugues Girard, Jean-Charles Arnault, Alexander Kromka, et al.. Switching polarity of oxidized detonation diamond nanoparticles on substrates. physica status solidi (a), Wiley, 2013, 210 (10), pp.2095-2099. ⟨10.1002/pssa.201300052⟩. ⟨cea-01816686⟩



Record views