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Abstract

DIVERSITY is a multi-purpose customizable platform based on symbolic execution. DIVERSITY has been
designed for the purpose of managing the diversity of different semantics, but also the diversity of possible
analyses based on symbolic execution. In this paper, we show how the input language of DIVERSITY can
be used to encode the semantics of UML scenarios which include timing constraints expressed with the VSL
language (standardized in the UML profile for embedded systems MARTE). We apply symbolic execution
on practical scenarios of a system-on-chip example a in order to select test behaviors using an advanced
exploration strategy implemented in DIVERSITY.

a Work partially supported by the European project OpenES www.openes-project.org

Keywords: Symbolic execution and tools, Modeling languages semantics, UML Scenario-based
Interactions, VSL/MARTE timing constraints, Test selection strategy and coverage.

1 Introduction

Symbolic execution was first defined for programs [15]. The underlying concept

consists in executing programs, not for concrete numerical values but for symbolic

parameters, and computing logical constraints on those parameters at each step of

the execution. Symbolic execution allows computing semantics of programs or mod-

els and representing them efficiently in an abstract manner. Model-based testing

(MBT) is one of the most popular applications of symbolic execution[11,10,14,2].

Symbolic execution has been used to select some parts of the resulting symbolic rep-

resentation of models, which may be infinite due to the presence of unbounded loops

for example, according to some coverage objective. Test data are then generated

from those chosen parts using constraint solving techniques. The increased efficiency

of solvers in recent years [9,8,4] has helped symbolic execution to be adopted more

widely for this purpose. Many symbolic execution based tools for formal treatments
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have been developed for diverse usages, for example the ones used in (Model-Based)

Testing cited in the following survey [1]. Compared to these tools, the objective of

the DIVERSITY platform is to offer an extensible platform to take into considera-

tion various formal analysis possibilities. For this, DIVERSITY provides a common

symbolic execution platform:

• generic enough to take into account semantics of a wide range of models;

• extensible to allow customizing of the basic symbolic treatments to implement

specific formal functionalities (e.g. MBT algorithms, exploration strategies, etc.).

DIVERSITY is on its way to becoming an Eclipse open-source project [6]. In this

paper, we give a brief introduction to DIVERSITY, and in particular we provide an

example of its use. To illustrate extensibility, we show how an adaptation of the ex-

ploration strategy Hit-or-Jump [5],a heuristic whose aim is to achieve targeted test

coverage, can be easily integrated into the customizable symbolic execution process.

To illustrate the generality of DIVERSITY, we show how it provides interesting

support of the semantics of the UML sequence diagrams [13]. Sequence diagrams

display the UML graphical language used to describe the interaction behavior of

system components. First, we have identified a subset of the input language of

DIVERSITY to encode this interaction language. In fact, DIVERSITY provides a

pivot language called xLIA(executable Language for Interaction and Architecture)

which is a generic language with a variety of primitives which allow encoding a diver-

sity of classical semantics. In particular, xLIA supports classical automata syntax

involving symbolic data and communication actions. For MBT purposes, we have

in previous work [3] provided a formal treatment of the semantics of UML sequence

diagrams which involve timing constraints, specified using the Value Specification

Language (VSL, standardized in the UML profile for MARTE [12]), by translating

them into a kind of transition-labeled symbolic automata. In this paper, we extend

this work by showing how these automata can be implemented in xLIA in an effi-

cient way using asynchronous communication mechanisms and facilities to encode

MARTE timing constraints. TIOSTS can be easily encoded as a subset of xLIA

with a simple mechanism for communication. It appeared while implementing the

translation mechanism described in [3] that it is not an efficient representation for

symbolic execution in terms of performance, especially the message representation

resulted in unnecessary computations. Thus it is useful to choose a different way of

translating messages that alleviates this effect. We want to put particular emphasis

on describing the translation mechanism and the use of DIVERSITY for coverage

analysis, as an illustration of the more generic abilities of the tool.

Overview. Section 2 presents the transition-labeled automata in xLIA which are

used to encode sequence diagrams and their associated symbolic semantics. Sec-

tion 3 presents the symbolic execution process in DIVERSITY and how it is coupled

with the Hit-or-Jump exploration strategy. Section 4 gives an example of the specifi-

cation of a timed interaction behavior of a system-on-chip using sequence diagrams.

Section 5 illustrates the translation of sequence diagrams into xLIA and exhibits

some experimental results about their symbolic execution with DIVERSITY using

the Hit-or-Jump exploration strategy. Finally, we conclude in Section 6.
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2 Transition-labeled symbolic automata in xLIA

The xLIA language of DIVERSITY supports a form of symbolic automata involv-

ing variables to abstractly denote system states (we call them data variables) and

variables to capture timing constraints (we call them time variables) on system

executions. Such automata communicate by exchanging symbolic terms over chan-

nels acting as buffers where the sent data is stored to be consumed later. We call

these automata Symbolic Transition Systems (STS for short). They are defined by

triples (Q, q0, T r) where Q is a set of states which represent control points, q0 is a

distinguished control point of Q called the initial control point, and Tr is a set of

labeled transitions. A transition is defined by a tuple (q, θ, φt, φd, act, ρ, q
′) where q

(respectively q’) is the source (respectively target) control point of the transition,

φt is a first order formula on time variables called time guard, φd is a first order

formula on data variables called data guard, θ is a set of time variables, act is a

communication action and ρ is an assignment of data variables which represents

state evolutions.

system< and > Sys {
channel< buffer: fifo<*> > c ;
statemachine< or > A {
var time< real > t;
var integer x, y, i;
...
state q1 {

transition tr --> q2 {
update(t);
tguard WF(t[i] - t[i-1] < 0.3) ;
guard x < y ;
output x+y via c ;
{|and| y := y + 1; x := y; i := i+1 } ;

}
...

Figure 1. DIVERSITY code for an output transition.

Data passing and update. The execution of a transition results in an action

which may be the emission (resp. reception) of a value v on channel c, classically

denoted c!v (resp. c?v), or a particular action τ which stands for the absence of

an observable action. Consider the transition tr of Figure 1 given in DIVERSITY

encoding. The action of tr stands for the emissions of the value resulting from

evaluation of x + y through the channel c where x and y are data variables, and

the channel c is associated with an unbounded fifo buffer. An example of input is

input x via c which means that a value is received through channel c and assigned on

x. Note the block |and|{...} introduced to encode the substitution of tr: Statements

inside are evaluated in parallel 4 . For instance, assuming y is initially assigned with

some value v before executing tr: if this block is not used, this gives rise to assigning

x with v+1, yet in the semantics of interest, x has to be assigned with v. In the case

where the action of tr is an input, the assignment induced by the input is taken into

account before the other assignments. Then the transition is fired, if its data guard

is satisfied before any data variable update in the case of an output action; and in

the case of input action, only the assignment induced by the input is considered

besides.

4 All the top level statements are evaluated sequentially hence the importance of the ordering of the different
components of a transition.
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A system in our framework is defined by a set of communicating STS acting asyn-

chronously, including for data passing. In fact, for any output of a value on a given

channel (i.e. write to the associated buffer), that value may be consumed later

by a different STS using an input action on the same channel (i.e. read from the

associated buffer).

Time modeling. The symbol t corresponds to a time variable which is an array

capturing consecutive execution instants of tr. These instants are picked in a time

scale isomorphic to real numbers. The statement update(t) denotes a special action

which appends the time instant of the last occurrence of tr to t. Time guards

are evaluated after the time variables are updated. Consider now the time guard

t[i]− t[i−1] < 0.3 which expresses that the delay between two successive executions

of tr is lower than 0.3 time units. In the first execution, t[i−1] is undefined and the

time guard is conventionally evaluated to true. For this, we define the weak form

of a time guard φt as WF (φt) , φt
∨
t[x]∈φt(x < 0 ∨ x > len(t)), where t[x] ∈ φt

denotes a time instant term occurring within the time guard φt, and len(t) denotes

the length of t as an array of time instants. In fact, the weak form of a time guard

characterizes situations where the index occurring in a time instant term is out of

bounds for the corresponding time variable. For example, WF (t[i]− t[i− 1] < 0.3)

results in t[i] − t[i − 1] < 0.3 ∨ i < 1 ∨ i > len(t) after simplification which is the

actual guard to be satisfied for firing the transition.

Symbolic semantics. We provide STS with semantics using a symbolic execution

technique which computes all the possible behaviors of the automata in the form

of a symbolic tree. We start by discussing the symbolic execution of a transition,

illustrated on tr in Figure 2. Such an execution is always described up to a reached

execution context node in the tree, denoted EC which is composed of the following

piece of information:

• a control point that determines which transitions can potentially be executed;

• a constraint on symbols denoting durations called Path Time Condition, PCt;

• a constraint on symbolic data used for computation called Path Condition PCd;

Path conditions fully characterize the constraints to be satisfied in order to follow

the path in the symbolic tree associated with the EC.

• an instant, element of the time scale, represented by a sum of duration symbols,

and representing the moment of occurrence of the last action encountered in the

previous transition execution;

• and a substitution of the STS variables by terms over symbols, denoting their

current associated values.

ECk
(δk+1) c!X+Y

−−−−−−−−−−−−−−−−−→ ECk+1

q1 q2

PCkt PCkt ∧ δj+1 + . . .+ δk+1 < 0.3

PCkd PCkd ∧X < Y

δ0 + . . .+ δk δ0 + . . .+ δk + δk+1

σk : t[9]← δ0 + . . .+ δj σk : t[10]← δ0 + . . .+ δk+1

i← 10, x← X, y ← Y i← 11, x← Y , y ← Y + 1

c← w c← w.(X + Y )

Figure 2. Symbolic execution of the transition of Figure 1.
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Let us consider ECk as a possible EC from which tr is a candidate transition to

be fired. Executing tr from ECk results in introducing a new symbol to denote the

duration of tr which is δk+1 and building a new EC, ECk+1, where the two guards

of tr are satisfied. In ECk+1, the current time instant δ1 + . . .+ δk+1 is appended to

time variable t. PCt gains a new constraint δj+1 + . . . + δk+1 < 0.3 which denotes

the satisfaction of the time guard t[i]− t[i− 1] < 0.3: in this transition, i = 10 with

t[9] ← δ0 + . . . + δj and t[10] ← δ0 + . . . + δk+1. Similarly, the constraint X < Y

is added to the PCd. When tr is fired, the communication action of tr, that is

c!x+ y, is denoted by the symbolic action c!X + Y which results from substituting

x and y by their respective associated symbols X and Y . x and y are then updated

in ECk+1 by applying the transition substitution. Note that, in ECk, the channel

c is assigned w which is a finite word over symbolic fresh terms representing the

content of the channel. In ECk+1, the value bound to c is w to which is appended

the emitted symbolic term X + Y .

The execution starts from the initial EC0 = (q0, true, true, 0, σ0) where the

control state is q0, the starting state of the STS, and σ0 associates t and c resp.

with the empty array and the empty word, and any other variable of the system

with a distinct fresh symbol. It constitutes the root of the symbolic tree. The

symbolic tree is computed by executing (symbolically) all STS transitions outgoing

from EC0 as described previously and then continuing inductively the execution

from the STS control states reached by immediate previous executions.

3 DIVERSITY customizable symbolic processing and
the Hit-or-Jump exploration strategy

DIVERSITY implements a generic symbolic execution processing (depicted in Fig-

ure 3) which can be customized on the fly thanks to the filter mechanism that we

will discuss in this section.

The symbolic processing consists of five Steps (i), . . . , (v). The scheduling of these

steps is cyclic. Each cycle consists in updating a queue of ECs. At the beginning of

the first iteration of the cycle, the queue contains EC0 which characterizes the initial

symbolic values associated to the variables and the path condition is restricted to

True because no constraint has yet been encountered. Each iteration step consists in:

selecting one or more EC(s) (removed from the queue); computing their children ECs

by symbolically executing all outgoing transitions from the control states reached

by the parent ECs; deciding whether or not the parent ECs are added to the tree;

in which case, their children ECs are added to the queue. The whole symbolic

processing is based on the notion of filter. The purpose of a filter is to dynamically

accept or reject ECs according to a specific user coverage purpose. It can be seen

as a selection strategy to complement the traversal strategy in order to increase the

chances of reaching the targeted coverage while avoiding combinatorial explosion.

Steps of the symbolic processing.

• Step (i) Selection of EC candidates for Step (ii): One or more EC are selected

from the queue according to a customizable strategy. For the moment, the follow-

ing exploration strategies for generating the symbolic tree are implemented: Ran-
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Figure 3. The running process of symbolic execution in DIVERSITY.

dom traversal, classical BFS (Breadth First Search) and DFS (Depth First Search)

traversals. Some heuristics may however associate a weight with each of the EC,

and thus induce an order of the ECs in the queue which means that the queue

becomes a priority queue.

• Step (ii) Pre-filtering: Pre-filtering consists in applying one or more filters to

reason about ECs before computing their children. If the EC successfully passes

the scrutiny of each of the chained filters, it continues its way in the symbolic

processing flow, through Step (ii − a). Otherwise in Step (ii − b), the EC will be

ignored or possibly tagged (by an informative note on the reason for its failure) and

inserted into the symbolic tree under construction. In the favorable case where all

user coverage objectives are met, the symbolic processing stops.

• Step (iii) Symbolic execution: Each EC issued from Step (ii − a) is evaluated

symbolically. During the evaluation its children EC1, . . . , ECn are computed by

symbolically executing outgoing transitions as detailed in Section 2.

• Step (iv) Post-filtering: Step (iv) is similar to Step (ii), except that the filter

involved in post-filtering inspects the EC and its children to decide of the future of

the symbolic processing. After passing the post-filters, there are two possibilities:

– Step (iv−a) If successful, the symbolic processing continue with Step (v) in which

case the the EC is added to the tree.

– Step (iv−b) If failed, the EC and its children EC1, . . . , ECn are ignored or inserted

in the symbolic tree (possibly tagged by an informative note on the reason for their

failure);

As in Step (ii), in the favorable case where all user coverage objectives are met, the

symbolic processing stops.

• Step (v): All the children EC1, . . . , ECn resulting from Step (iv−a) are enqueued

and the symbolic processing iterates with Step (i).

Hit-or-Jump exploration strategy. Classical exploration algorithms like
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Breadth First Search (BFS) are implemented in DIVERSITY. However in some

cases, using BFS exhaustively results in exploring a large number of paths in the

symbolic tree which are irrelevant to the user targeted coverage criteria. DIVER-

SITY implements as a filter (which acts at the Pre-filtering Step) an adaptation of

the heuristic traversal Hit-or-Jump (HoJ for short) [5]. This heuristics aims at com-

puting a symbolic tree covering a declared sequence or set of automata constructs

to cover such as transitions, states, input/output actions, or logical formulas to sat-

isfy. The idea is to define a fixed maximal depth N for which a symbolic sub-tree is

computed in BFS manner (sub-trees are delimited by dashed triangles in Figure 3).

In order to build this sub-tree (of height N), each time an EC is selected at Step

(i), the HoJ compares the relative height of EC 5 to N : if it is equal to N then

the EC is added to the sub-tree; otherwise the symbolic execution continues with

Step (iii). The sub-tree computation is finished when the execution queue is empty.

At this level, the HoJ analyzes the resulting sub-tree to study whether or not some

parts satisfy the coverage: (Hit) If some non-empty prefixes of the sequence has

been covered, HoJ identifies the set of paths (of the sub-tree) that have covered the

greatest prefix, and chooses one or several ones among them at random, else HoJ

chooses at random one or several paths; (Jump) Once a path is chosen the whole

process starts again from the last EC of the path (i.e. the target state of the last

symbolic transition of the path) until the sequence is fully covered.

4 Sequence diagrams: System-on-chip example

As mentioned in the introduction, we use the following example: a System-on-Chip

firmware in charge of dispatching graphical commands to several hardware units

according to their priority and other factors. This example demonstrates several

elements of interest: behavioral patterns such as parallel treatments, repeating

behaviors and optional actions, and timing constraints that are modeled in VSL.

A set of UML sequence diagrams describes execution scenarios including timing

information. Those scenarios represent the expected behavior of the system in terms

of execution sequence order and timing. Sequence diagrams can be modeled easily

using the graphical editor Papyrus [7] integrated with Eclipse.

System overview. The system is comprised of three components,

a Host, a Firmware, and a Hardware. The roles of those components are as follows:

• the Host sends commands to be executed by the Hardware;

• the Hardware executes blindly the commands it receives;

• the Firmware is in charge of scheduling which commands the Hardware executes.

Commands must be executed according to attached priorities. Furthermore, the

commands can be executed in several phases. There are two tasks that the firmware

must complete: (FirmwareTaskA) Pre-processing the commands it receives for

maximum efficiency, adding relevant information and separating the command into

several sub-commands, and (FirmwareTaskB) Computing an execution schedule

on the fly and sending the sub-commands to the hardware according to this schedule.

For the sake of simplicity and readability, we will consider only two levels of priority:

HP (high priority) and LP (low priority). The firmware maintains two queues HPQ

5 Distance of the EC to the root of the current sub-tree.
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and LPQ containing the commands according to their priority level.

System behavior. The behavior described in diagrams sdPreprocessing,

sdEnqueuing, sdProcessing and sdF inishing can be repeated an unknown number

of times, which is captured by the loop operator. Furthermore, the four scenarios

happen in parallel (as expressed by the par operator) though they share some data,

such as the commands being treated. Each of the component roles is represented

by a vertical lifeline where time evolves from top to bottom and where messages

representing pieces of data transmitted between lifelines are represented by arrows

between them. Messages have type Signal, which carries attributes, such as the

specifics of a command to be executed, e.g. its priority and its weight. We use two

lifelines to specify the role of the firmware: FirmwareTaskA and FirmwareTaskB.

FirmwareTaskA is tasked with the communications with the host and the pre-

processing of commands received from the host. FirmwareTaskB is tasked with

scheduling the execution of commands on the hardware, and communication with

the hardware.

We use sequence diagrams with structuring operators which allow composing

behaviors: the loop operator specifies a behavior which occurs cyclically, the alt

specifies a choice between alternative behaviors, opt specifies a behavior which may

occur optionally, and par specifies that behaviors occur in parallel. Those operators

are graphically associated with rectangles (covering portions of lifelines and mes-

sages) to delimit the concerned behaviors. Four scenarios occur in parallel during

the system execution: preprocessing of the commands, scheduling, computing, and

reporting. We describe precisely only two scenarios that include elements of particu-

lar interest, especially in manner of time constraints: preprocessing and scheduling.

Preprocessing. The sequence diagram sdPreprocessing describes the pre-

processing role of FirmwareTaskA: when the host requests that commands be

treated, they are preprocessed and enqueued with respect to their priority. The

potential arrival of a command is modeled by the opt operator. Upon reception of

a new command, FirmwareTaskA stores it in a queue and computes a new value

for the boolean variable Preemption: its value is set to true if the new command

newCmd is of (strictly) higher priority than the command currentCmd currently

being treated. Furthermore, in practice, the firmware assigns newCmd an internal

id, denoted by id(newCmd). The identifiers are incremented so that the identifiers

reflect the order of reception of the commands. All along the scenarios, components

perform actions we do not detail, such as retrieving attribute values when receiving

a message, or the way the various queues are maintained. We chose to simplify the

scenarios by hiding local executions on lifelines and operations on queues. If pre-

emption is set to true, the firmware computes the next command nextCmd in the

queue of highest priority and starts pre-processing nextCmd (possibly interrupting

the pre-processing of another command of lower priority). When the pre-processing

ends (i.e. when message endPreprocess(currentCmd) is received), the firmware en-

queues the preprocessed command in the command queue HPQ or LPQ. Moreover,

a timing constraint must be satisfied when pre-processing ends: namely, the pre-

processing time of cmd, when taking into account the pre-processing time of com-
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mands with higher priority received after the reception time of cmd, is within an

acceptable amount depending on the weight of cmd and on a given factor F. More

precisely, the following timing constraint must be satisfied:

t2[i]− t1[id(cmd)]− interruptT ime(cmd) < weight(cmd) ∗ F

where interruptT ime(cmd) =
∑
{finishT ime(cmd′) − startT ime(cmd′) |

startT ime(cmd′) > startT ime(cmd) ∧ priority(cmd′) > priority(cmd)} corre-

sponds to the preprocessing time of the higher priority commands. In the case

where there are only two kinds of priorities, the pre-processing of urgent com-

mands cannot be interrupted. Consequently, if cmd is of priority HP, we have that

finishT ime(cmd) = t2[id(cmd)] and startT ime(cmd) = t1[id(cmd)]. Moreover,

startT ime(cmd′) > startT ime(cmd) holds if and only if id(cmd′) > id(cmd), hence

the formulation of the constraint given in the sequence diagram.

Figure 4: Preprocessing commands

Figure 5: Scheduling preprocessed

commands

Processing The aim of the preprocessing phase was to produce information in

order to ease the processing of the commands: commands have been divided into

subcommands built with a given quantity of information quanta to be processed,

and stored in one of the command queues HPQ or LPQ. The subcommands are

processed according to their priorities, in a roundrobin manner. FirmwareTaskB

computes from HPQ and LPQ . The subcommand is then sent to the hardware to

be processed, and the hardware sends back a message finished(subCmd) when the

computations end. The processing time for a single subcommand must be bounded

by the weight of this subcommand, as captured by the time constraint t2[i]− t1[i] <

weight(subCmd). Note that the number of iterations of this behavior depends on

the number of commands received and on the length of those various commands,

and could thus be computed in order to prevent unnecessary interleaving.

5 Translation of sequence diagrams and experiments

Translation into xLIA.

We consider the subset of timed sequence diagrams with asynchronous message pass-

ing as they were presented in section 4. The semantics is obtained by translating

timed sequence diagrams into a system of communicating STS, each correspond-

ing to a lifeline. We show in figure 6 how to build transitions tr1 and tr2 that

represent respectively the emission of signal Sig by lifeline A and its reception by

lifeline B. The emitted signal conveyed by message msg1 transits through a chan-

nel msg1Channel. In fact we associate each message in the sequence diagram with

9
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accept(s:Sig)

@t1 @t2

B

{ t2[i] - t1[i] < 0.1 }
{ x < y }

msg1

loop

Sig(att1=x+y,…)

A

msg2

system< and > Sys {
channel< buffer: fifo<*> > msg1Channel ;
signal Sig (integer att1, ...);
statemachine< or > A {
var time< real > t1;
var integer x, y;
state q1 {

transition tr1 --> q2 {
update(t1);
guard x < y ;
output Sig(x+y,...) via msg1Channel ;

}
...

statemachine< or > B {
timevar< real > t2;
var Sig s;
var integer i_t2;
state q3 {

transition tr2 --> q4 {
update(t2);
tguard WF(t2[i_t2] - t1[i_t2] < 0.1) ;
input Sig(s) via msg1Channel ;
i_t2 := i_t2 + 1

}
...

Figure 6. Translation of asynchronous signal passing.

a channel equipped with fifo buffering whose role is to store sent signals until the

target lifeline is ready to receive them. Having one channel per message allows

our translation to support, for instance, message overtaking. For instance, mes-

sages msg1 is sent after message msg2 (depicted in dashed line), but the target

lifeline receives it first. Such inversions may occur when communication is asyn-

chronous as allowed in the UML standard [13]. We have introduced the notion of

signal in DIVERSITY in the input/output actions: First the type Sig is declared

globally with its attributes, then it can be seamlessly used in communication actions

conforming to UML semantics:

• The output action output Sig(x+y,...) via msg1Channel builds implicitly an instance

of the signal Sig with attributes att1, . . . assigned with x + y, . . .. This instance

(with the attributes filled in) is buffered in the channel msg1Channel.

• The input action input Sig(s) via msg1Channel denotes that the signal received from

channel msg1Channel is stored on a local variable s of type Sig in the target lifeline

STS B (recall that the signal is declared globally at the system level). This way,

signal attributes can be used in computations by B.

Note that when there is a time guard associated to the emission or reception of a

message using time instant terms of the form t[i], we use an index it to capture the

last instant of the occurrence of the execution. This is the case for the reception of

the message msg1: in tr2, the index it2 refers to the last defined location in t2 and

is incremented accordingly after being used in the time guard t2[it2 ]− t1[it2 ] < 0.1.

The translation of combined operators consists mainly in creating decision and

junctions states/transitions and then inductively translating the behaviors defined

in their operands. We illustrate the translation of the alt operator in figure 7. From
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Figure 7. Translation of the choice operator.

the local point of view of lifeline Ai, the alt operator gives a non-deterministic

choice between two scenarios inside operands OP1 and OP2: either it sends the

message msg1 or it consumes the message msg2 from the associated channel. For

example in the latter case, the lifeline Aj is meant to send the message msg1 so

that both lifelines execute the same scenario (inside OP2). The translation intro-

duces decision transitions in the STS to reflect those choices. The lifelines Ai, Aj
will inform each other of their choice by sending coordination messages through

dedicated scheduling channels schedi, schedj . So Ai being busy with previous ex-

ecutions, may receive from Aj in schedi successively OP1, OP2, OP1 informing it

to follow their nested behaviors to be consistent with the choices of Aj (see the

transition trfollowOP1, trfollowOP2). Or Ai may operate at a faster rate and initiate

the choice (see the transitions trchooseOP1, trchooseOP2). Note that reads from com-

munication channels are by hypothesis blocking, i.e. Ai cannot test for emptiness of

schedi. We use an counter channel counteri which is filled: by 1 each time a value

is written on schedi and; by a particular symbol NIL that indicates the end of the

buffer. This counter channel forces Ai to read all the values in schedi while NIL is

not read (see transitions trreadSched). All the operand names read from schedi are

stored in a local buffer schedilocal before being analyzed to look for a given operand.

Knowing that in full generality, some operand OP 6= OP1, OP2 associated with an-

other combining operators covering Ai and some other lifeline Ak, k 6= j may also be

stored in schedilocal, we have defined in DIVERSITY advanced routines firstOcc

and popF irstOcc on local schedulers to access, and respectively to consume, the

value (among a set of given values) that occurs the first in the scheduler.

Experiments with DIVERSITY. We have developed UML2DIVERSITY a plug-in

for Papyrus [7] that allows translating automatically sequence diagrams into xLIA.

The plug-in generates a textual file describing the System-on-Chip specification in

xLIA from the sequence diagrams given in Section 4: It includes respectively 107

and 199 STS states and transitions. In order to demonstrate the interest of using

the HoJ heuristic described in Section 3, we have defined two families of objectives

to cover:

• Obj1(k): Covering sequentially Request(newCmd) k times,
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Objective
Success
Rate

Best execution metrics

#Steps #Jumps Exec. Time #ECs

Obj1(1) 100% 222 11 1s607 301

Obj1(2) 90% 548 23 3s867 767

Obj1(4) 100% 1, 902 40 12s561 2, 663

Obj1(8) 100% 4, 443 93 28s408 6, 202

Obj1(16) 90% 9, 133 190 1m4s3ms 12, 764

Obj2(16) 100% 8, 885 181 1m2s479ms 12, 435

Table 1
Hit-or-Jump metrics.

then enqueue(currentCmd) k times, and finished(cmd) k times.

• Obj2(k): Covering k times the sequence

Request(newCmd) . . . enqueue(currentCmd) . . . finished(cmd).

We provide for several values of k the success rate for 10 trials. For the most

effective execution among successful trials, we also give the following metrics: the

number of execution steps computed, the number of Jumps, the execution time and

the number of ECs computed. We parametrized the symbolic exploration strategy

as follows: the fixed maximal depth N for the exploration of a sub-tree was 5, the

number of ECs to be kept in the event of a Hit (at least one transition of interest

was covered during the exploration of the current sub-tree) was 7 and the number

of ECs to select in the event of a Jump (no transition of interest covered in the

sub-tree at the end of its construction) was 5.

We observe that the strategy can sometimes fail at covering all the desired tran-

sitions. Indeed, the Hit-or-Jump strategy is a heuristics where some randomness is

involved, namely the number of branches to be kept at the end of each step. We ob-

serve that there are very few occurrences of timeouts, and the successful explorations

are very fast. In particular, remark that the measures do not grow exponentially,

which would be the case if we had opted to use a more classical exploration strat-

egy. As indicative of the efficiency of the HoJ strategy, note that in order to cover

a sequence of transitions such as Request(newCmd) . . . enqueue(currentCmd) . . .

finished(cmd), any of the classical exploration strategies would have to reach a

depth of at least 40, and that is costly. For information, using the BFS strategy

to explore a depth of 40, we computed more than 500, 000 execution steps. It is

obvious to see that such computations are too costly to produce test inputs in large

quantities, and why the use of heuristics in those cases is desirable.

6 Conclusion

The expressive syntax of DIVERSITY’s xLIA input language has allowed us to en-

code most of the concepts of UML sequence diagrams, which involve additionally

MARTE timing constraints. In the future, we plan to support a larger set of UML,

especially the state machines seem a particularly interesting subset of UML to reflect

the xLIA specification in the form of transition-labeled symbolic automata. In this

paper, we have also described the symbolic execution implemented in DIVERSITY

and how it has been coupled with the fast exploration strategy Hit-or-Jump thanks

to the customization facilities provided by DIVERSITY. The performance experi-
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ments with system-on-chip example have been concluding on the suitability of the

Hit-or-Jump strategy to achieve coverage objectives on highly concurrent system

models. We also plan to integrate in DIVERSITY more advanced techniques such

as the Partial-Order Reduction [16] for efficient exploration of concurrent models.
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