Enhanced electrocaloric efficiency via energy recovery - Archive ouverte HAL Access content directly
Journal Articles Nature Communications Year : 2018

Enhanced electrocaloric efficiency via energy recovery

(1, 2, 3) , (2) , (1) , (2) , (2) , (3) , (3) , (3)
1
2
3

Abstract

Materials that show large and reversible electrically driven thermal changes near phase transitions have been proposed for cooling applications, but energy efficiency has barely been explored. Here we reveal that most of the work done to drive representative electrocaloric cycles does not pump heat and may therefore be recovered. Initially, we recover 75–80% of the work done each time BaTiO$_3$-based multilayer capacitors drive electrocaloric effects in each other via an inductor (diodes prevent electrical resonance while heat flows after each charge transfer). For a prototype refrigerator with 24 such capacitors, recovering 65% of the work done to drive electrocaloric effects increases the coefficient of performance by a factor of 2.9. The coefficient of performance is subsequently increased by reducing the pumped heat and recovering more work. Our strategy mitigates the advantage held by magnetocaloric prototypes that exploit automatic energy recovery, and should be mandatory in future electrocaloric cooling devices.

Dates and versions

cea-01807559 , version 1 (04-06-2018)

Identifiers

Cite

E. Defay, R. Faye, Ghislain Despesse, H. Strozyk, D. Sette, et al.. Enhanced electrocaloric efficiency via energy recovery. Nature Communications, 2018, 9, pp.1827. ⟨10.1038/s41467-018-04027-9⟩. ⟨cea-01807559⟩
41 View
0 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More