S. Si, P. Jollivet, M. Tribet, S. Peuget, and S. Schuller, 300, and 450 °C. Data availability The data that support the findings of this study are available from the corresponding author upon reasonable request Radionuclides containment in nuclear glasses: an overview, Radiochim. Acta, vol.150, issue.105, pp.927-959, 2017.

B. C. Bunker, G. W. Arnold, D. E. Day, and P. J. Bray, The effect of molecular structure on borosilicate glass leaching, Journal of Non-Crystalline Solids, vol.87, issue.1-2, pp.226-253, 1986.
DOI : 10.1016/S0022-3093(86)80080-1

D. M. Sanders and L. L. Hench, Mechanisms of Glass Corrosion, Journal of the American Ceramic Society, vol.2, issue.6, pp.373-377, 1973.
DOI : 10.1039/an9638800100

H. Scholze, Chemical durability of glasses, Journal of Non-Crystalline Solids, vol.52, issue.1-3, pp.91-103, 1982.
DOI : 10.1016/0022-3093(82)90283-6

S. Gin, An international initiative on long-term behavior of high-level nuclear waste glass, Materials Today, vol.16, issue.6, pp.243-248, 2013.
DOI : 10.1016/j.mattod.2013.06.008

URL : https://hal.archives-ouvertes.fr/in2p3-00864925

R. Hellmann, Unifying natural and laboratory chemical weathering with interfacial dissolution???reprecipitation: A study based on the nanometer-scale chemistry of fluid???silicate interfaces, Chemical Geology, vol.294, issue.295, pp.294-295, 2012.
DOI : 10.1016/j.chemgeo.2011.12.002

T. Geisler, Aqueous corrosion of borosilicate glass under acidic conditions: A new corrosion mechanism, Journal of Non-Crystalline Solids, vol.356, issue.28-30, pp.1458-1465, 2010.
DOI : 10.1016/j.jnoncrysol.2010.04.033

S. Gin, The controversial role of inter-diffusion in glass alteration, Chemical Geology, vol.440, pp.115-123, 2016.
DOI : 10.1016/j.chemgeo.2016.07.014

S. Gin, Atom-Probe Tomography, TEM and ToF-SIMS study of borosilicate glass alteration rim: A multiscale approach to investigating rate-limiting mechanisms, Geochimica et Cosmochimica Acta, vol.202, pp.57-76, 2017.
DOI : 10.1016/j.gca.2016.12.029

S. Gin, Origin and consequences of silicate glass passivation by surface layers, Nature Communications, vol.2, issue.1, p.6360, 2015.
DOI : 10.1016/S0968-4328(99)00005-0

URL : https://hal.archives-ouvertes.fr/hal-01157456

M. Collin, Structure of International Simple Glass and properties of passivating layer formed in circumneutral pH conditions, npj Mater. Degrad. 2, 2018.
DOI : 10.1002/mrc.984

URL : https://hal.archives-ouvertes.fr/cea-01707691

P. M. Dove, The dissolution kinetics of quartz in aqueous mixed cation solutions, Geochimica et Cosmochimica Acta, vol.63, issue.22, pp.3715-3727, 1999.
DOI : 10.1016/S0016-7037(99)00218-5

P. M. Dove and D. A. Crerar, Kinetics of quartz dissolution in electrolyte solutions using a hydrothermal mixed flow reactor, Geochimica et Cosmochimica Acta, vol.54, issue.4, pp.955-969, 1990.
DOI : 10.1016/0016-7037(90)90431-J

P. M. Dove and C. J. Nix, The influence of the alkaline earth cations, magnesium, calcium, and barium on the dissolution kinetics of quartz, Geochimica et Cosmochimica Acta, vol.61, issue.16, pp.3329-3340, 1997.
DOI : 10.1016/S0016-7037(97)00217-2

P. Jollivet, S. Gin, and S. Schumacher, Forward dissolution rate of silicate glasses of nuclear interest in clay-equilibrated groundwater, Chemical Geology, vol.330, issue.331, pp.207-217, 2012.
DOI : 10.1016/j.chemgeo.2012.09.012

X. Feng and I. L. Pegg, Effects of salt solutions on glass dissolution, Phys. Chem. Glass, vol.35, pp.98-103, 1994.

J. D. Vienna, J. V. Ryan, S. Gin, and Y. Inagaki, Current Understanding and Remaining Challenges in Modeling Long-Term Degradation of Borosilicate Nuclear Waste Glasses, International Journal of Applied Glass Science, vol.420, issue.1-3, pp.283-294, 2013.
DOI : 10.1016/j.jnucmat.2011.09.012

S. Gin, Open Scientific Questions about Nuclear Glass Corrosion, Procedia Materials Science, vol.7, pp.163-171, 2014.
DOI : 10.1016/j.mspro.2014.10.022

URL : https://doi.org/10.1016/j.mspro.2014.10.022

C. Jegou, S. Gin, and F. Larche, Alteration kinetics of a simplified nuclear glass in an aqueous medium: effects of solution chemistry and of protective gel properties on diminishing the alteration rate, Journal of Nuclear Materials, vol.280, issue.2, pp.216-229, 2000.
DOI : 10.1016/S0022-3115(00)00039-8

F. Angeli, Influence of lanthanum on borosilicate glass structure: A multinuclear MAS and MQMAS NMR investigation, Journal of Non-Crystalline Solids, vol.376, pp.189-198, 2013.
DOI : 10.1016/j.jnoncrysol.2013.05.042

T. Chave, P. Frugier, S. Gin, and A. Ayral, Glass???water interphase reactivity with calcium rich solutions, Geochimica et Cosmochimica Acta, vol.75, issue.15, pp.4125-4139, 2011.
DOI : 10.1016/j.gca.2011.05.005

URL : https://hal.archives-ouvertes.fr/hal-01695790

J. Schneider, Qn distribution in stoichiometric silicate glasses: thermodynamic calculations and 29Si high resolution NMR measurements, Journal of Non-Crystalline Solids, vol.325, issue.1-3, pp.164-178, 2003.
DOI : 10.1016/S0022-3093(03)00332-6

F. Angeli, M. Gaillard, P. Jollivet, and T. Charpentier, Influence of glass composition and alteration solution on leached silicate glass structure: A solid-state NMR investigation, Geochimica et Cosmochimica Acta, vol.70, issue.10, pp.2577-2590, 2006.
DOI : 10.1016/j.gca.2006.02.023

A. Quintas, NMR Study of a Rare-Earth Aluminoborosilicate Glass with Varying CaO-to-Na2O Ratio, Applied Magnetic Resonance, vol.213, issue.96, pp.613-634, 2007.
DOI : 10.1007/s00723-007-0041-0

N. Ollier, T. Charpentier, B. Boizot, G. Wallez, and D. Ghaleb, A Raman and MAS NMR study of mixed alkali Na???K and Na???Li aluminoborosilicate glasses, Journal of Non-Crystalline Solids, vol.341, issue.1-3, pp.26-34, 2004.
DOI : 10.1016/j.jnoncrysol.2004.05.010

URL : https://hal.archives-ouvertes.fr/hal-01087395

J. J. Neeway, Low-temperature lithium diffusion in simulated high-level boroaluminosilicate nuclear waste glasses, Journal of Non-Crystalline Solids, vol.405, pp.83-90, 2014.
DOI : 10.1016/j.jnoncrysol.2014.08.053

J. J. Neeway, Ion-Exchange Interdiffusion Model with Potential Application to Long-Term Nuclear Waste Glass Performance, The Journal of Physical Chemistry C, vol.120, issue.17, pp.9374-9384, 2016.
DOI : 10.1021/acs.jpcc.6b03681

F. Hofmeister, Zur Lehre von der Wirkung der Salze, Archiv f??r Experimentelle Pathologie und Pharmakologie, vol.24, issue.4-5, pp.247-260, 1888.
DOI : 10.1007/BF01918191

B. J. Teppen and D. M. Miller, Hydration Energy Determines Isovalent Cation Exchange Selectivity by Clay Minerals, Soil Science Society of America Journal, vol.70, issue.1, p.31, 2006.
DOI : 10.2136/sssaj2004.0212

S. Hocine, How Ion Condensation Occurs at a Charged Surface: A Molecular Dynamics Investigation of the Stern Layer for Water???Silica Interfaces, The Journal of Physical Chemistry C, vol.120, issue.2, pp.963-973, 2016.
DOI : 10.1021/acs.jpcc.5b08836

G. Eisenman, Cation Selective Glass Electrodes and their Mode of Operation, Biophysical Journal, vol.2, issue.2, pp.259-323, 1962.
DOI : 10.1016/S0006-3495(62)86959-8

URL : https://doi.org/10.1016/s0006-3495(62)86959-8

D. D. Eberl, Alkali Cation Selectivity and Fixation by Clay Minerals, Clays and Clay Minerals, vol.28, issue.3, pp.161-172, 1980.
DOI : 10.1346/CCMN.1980.0280301

URL : http://doi.org/10.1346/ccmn.1980.0280301

C. Cailleteau, Insight into silicate-glass corrosion mechanisms, Nature Materials, vol.31, issue.12, pp.978-983, 2008.
DOI : 10.1016/S0016-7037(01)00710-4

C. Cailleteau, Why Do Certain Glasses with a High Dissolution Rate Undergo a Low Degree of Corrosion?, The Journal of Physical Chemistry C, vol.115, issue.13, pp.5846-5855, 2011.
DOI : 10.1021/jp111458f

S. Gin, Dynamics of self-reorganization explains passivation of silicate glasses, Nat. Commun, 2018.

M. Fournier, Glass dissolution rate measurement and calculation revisited, Journal of Nuclear Materials, vol.476, pp.140-154, 2016.
DOI : 10.1016/j.jnucmat.2016.04.028

A. Fluegel, Global Model for Calculating Room-Temperature Glass Density from the Composition, Journal of the American Ceramic Society, vol.47, issue.4, pp.2622-2625, 2007.
DOI : 10.1016/j.jnoncrysol.2006.05.009

URL : https://zenodo.org/record/1230685/files/article.pdf

K. Iacovino, Glass Density Calc v3, 2017.

B. Wild, pH-dependent control of feldspar dissolution rate by altered surface layers, Chemical Geology, vol.442, pp.148-159, 2016.
DOI : 10.1016/j.chemgeo.2016.08.035

F. H. Larsen, 29Si and 17O (Q)CPMG-MAS solid-state NMR experiments as an optimum approach for half-integer nuclei having long T1 relaxation times, Chemical Physics Letters, vol.357, issue.5-6, pp.403-408, 2002.
DOI : 10.1016/S0009-2614(02)00520-1

URL : https://curis.ku.dk/ws/files/36017347/fhl_CPL_2002.pdf

D. Massiot, Modelling one- and two-dimensional solid-state NMR spectra, Magnetic Resonance in Chemistry, vol.320, issue.1, pp.70-76, 2002.
DOI : 10.1016/S0009-2614(00)00277-3

F. Salles, O. Bildstein, J. M. Douillard, M. Jullien, and H. Van-damme, Determination of the Driving Force for the Hydration of the Swelling Clays from Computation of the Hydration Energy of the Interlayer Cations and the Clay Layer, The Journal of Physical Chemistry C, vol.111, issue.35, pp.13170-13176, 2007.
DOI : 10.1021/jp0719762

URL : https://hal.archives-ouvertes.fr/hal-00258930

D. R. Rosseinsky, Electrode potentials and hydration energies, Theor. Correl. Chem. Rev, vol.65, pp.467-490, 1965.
DOI : 10.1021/cr60236a004