F. Chiti, C. M. Dobson, F. Misfolding, H. Amyloid, T. P. Knowles et al., The Amyloid State and Its Association with Protein Misfolding Diseases Pathological and Functional Amyloid Formation Orchestrated by the Secretory Pathway Functional Amyloid Formation within Mammalian Tissue Functional Amyloid ? from Bacteria to Humans Functional Amyloids As Natural Storage of Peptide Hormones in Pituitary Secretory Granules Structural Insights into Functional and Pathological Amyloid, ) Otzen, D. Functional Amyloid: Turning Swords into Plowshares (9) Podlubnaya, Z. A.; Bobylev, A. G. On Functional Amyloids of Muscle Proteins of Titin Family, pp.333-366, 2003.

B. Watt, G. Van-niel, G. Raposo, and M. S. Marks, PMEL: a pigment cell-specific model for functional amyloid formation, Pigment Cell & Melanoma Research, vol.91, issue.3, pp.300-315
DOI : 10.1073/pnas.91.15.7076

URL : http://onlinelibrary.wiley.com/doi/10.1111/pcmr.12067/pdf

D. Romero, R. Kolter, A. S. Mostaert, M. J. Higgins, T. Fukuma et al., Functional Amyloids in Bacteria Nanoscale Mechanical Characterisation of Amyloid Fibrils Discovered in a Natural Adhesive, Int. Microbiol. J. Biol. Phys, vol.2014, issue.1725, pp.65-73, 2007.

M. C. Garcia-sherman, T. Lundberg, R. E. Sobonya, P. N. Lipke, and S. A. Klotz, A unique biofilm in human deep mycoses: fungal amyloid is bound by host serum amyloid P component, npj Biofilms and Microbiomes, vol.206, issue.1, 2015.
DOI : 10.1093/infdis/jis521

URL : https://www.nature.com/articles/npjbiofilms20159.pdf

S. L. Gras, A. K. Tickler, A. M. Squires, G. L. Devlin, M. A. Horton et al., Functionalised amyloid fibrils for roles in cell adhesion, Biomaterials, vol.29, issue.11, pp.29-1553, 2008.
DOI : 10.1016/j.biomaterials.2007.11.028

M. R. Chapman, L. S. Robinson, J. S. Pinkner, R. Roth, J. Heuser et al., Role of Escherichia coli Curli Operons in Directing Amyloid Fiber Formation, Science, vol.295, issue.5556, pp.851-855, 2001.
DOI : 10.1126/science.1067484

URL : http://europepmc.org/articles/pmc2838482?pdf=render

D. Claessen, A novel class of secreted hydrophobic proteins is involved in aerial hyphae formation in Streptomyces coelicolor by forming amyloid-like fibrils, Genes & Development, vol.17, issue.14, pp.17-1714, 2003.
DOI : 10.1101/gad.264303

H. A. Wösten and M. L. De-vocht, Hydrophobins, the Fungal Coat Unravelled. Biochim. Biophys. Acta BBA, issue.17, pp.1469-79, 2000.

V. A. Iconomidou, G. Vriend, and S. J. Hamodrakas, Amyloids protect the silkmoth oocyte and embryo, FEBS Letters, vol.4, issue.3, pp.141-145, 2000.
DOI : 10.1093/nar/25.24.4876

P. S. Dannies, Prolactin and Growth Hormone Aggregates in Secretory Granules: The Need to Understand the Structure of the Aggregate, Endocrine Reviews, vol.33, issue.2, pp.254-270
DOI : 10.1210/er.2011-1002

C. Keeler, M. E. Hodsdon, and P. S. Dannies, Is There Structural Specificity in the Reversible Protein Aggregates That Are Stored in Secretory Granules?, Journal of Molecular Neuroscience, vol.22, issue.1-2, pp.43-49, 2004.
DOI : 10.1385/JMN:22:1-2:43

R. Cherif-cheikh, F. Bismuth, M. Torres, R. Alloza, M. T. Bosch et al., Autogel: A New Lanreotide Prolonged Release Formulation, Proc Int Symp Control Rel Bio Mat, vol.25, pp.798-799, 1998.

S. K. Maji, D. Schubert, C. Rivier, S. Lee, J. E. Rivier et al., Amyloid as a Depot for the Formulation of Long-Acting Drugs, PLoS Biology, vol.3, issue.2, p.17, 2008.
DOI : 10.1371/journal.pbio.0060017.st002

C. Valéry, M. Paternostre, B. Robert, T. Gulik-krzywicki, T. Narayanan et al., Biomimetic organization: Octapeptide self-assembly into nanotubes of viral capsid-like dimension, Proc. Natl. Acad. Sci, pp.100-10258, 2003.
DOI : 10.1073/pnas.97.3.1079

W. Grondelle, C. L. Van-;-iglesias, E. Coll, F. Artzner, M. Paternostre et al., Spontaneous fibrillation of the native neuropeptide hormone Somatostatin-14, Journal of Structural Biology, vol.160, issue.2, pp.211-223, 2007.
DOI : 10.1016/j.jsb.2007.08.006

URL : https://hal.archives-ouvertes.fr/hal-00264528

W. Grondelle, S. Lecomte, C. Lopez-iglesias, J. Manero, R. Cherif-cheikh et al., Lamination and spherulite-like compaction of a hormone???s native amyloid-like nanofibrils: spectroscopic insights into key interactions, Faraday Discussions, vol.110, 2013.
DOI : 10.1073/pnas.1219476110

F. Gobeaux, C. Tarabout, N. Fay, C. Meriadec, M. Ligeti et al., Directing peptide crystallization through curvature control of nanotubes, Journal of Peptide Science, vol.19, issue.03, pp.20-508
DOI : 10.1154/1.1763152

URL : https://hal.archives-ouvertes.fr/cea-01201911

C. Valéry, S. Deville-foillard, C. Lefebvre, N. Taberner, P. Legrand et al., et al. Atomic View of the Histidine Environment Stabilizing Higher-PH Conformations of PH-Dependent Proteins, pp.2015-7771

F. Gobeaux, F. Porcher, and R. Dattani, Reversible Morphological Control of Cholecystokinin Tetrapeptide Amyloid Assemblies as a Function of pH, The Journal of Physical Chemistry B, vol.121, issue.14, pp.3059-3069
DOI : 10.1021/acs.jpcb.7b02448

URL : https://hal.archives-ouvertes.fr/cea-01510377

E. Chatani, R. Inoue, H. Imamura, M. Sugiyama, M. Kato et al., Early Aggregation Preceding the Nucleation of Insulin Amyloid Fibrils as Monitored by Small Angle X-Ray Scattering. Sci. Rep, 2015.

R. Pellarin and A. Caflisch, Interpreting the Aggregation Kinetics of Amyloid Peptides, Journal of Molecular Biology, vol.360, issue.4, pp.882-892, 2006.
DOI : 10.1016/j.jmb.2006.05.033

T. P. Knowles, W. Shu, G. L. Devlin, S. Meehan, S. Auer et al., Kinetics and thermodynamics of amyloid formation from direct measurements of fluctuations in fibril mass, Proc. Natl. Acad. Sci, pp.104-10016, 2007.
DOI : 10.1016/S0076-6879(98)90032-5

J. Nasica-labouze, N. Mousseau, A. M. Streets, Y. Sourigues, R. R. Kopito et al., Kinetics of Amyloid Aggregation: A Study of the GNNQQNY Prion Sequence Simultaneous Measurement of Amyloid Fibril Formation by Dynamic Light Scattering and Fluorescence Reveals Complex Aggregation Kinetics, PLoS Comput. Biol. PLoS ONE, vol.2012, issue.81, pp.1002782-1002815

Y. Suzuki, J. R. Brender, M. T. Soper, J. Krishnamoorthy, Y. Zhou et al., Resolution of Oligomeric Species during the Aggregation of A? 1?40 Using 19 F NMR, Biochemistry (Mosc.), vol.2013, issue.11, pp.52-1903

F. T. Chan, D. Pinotsi, S. Gabriele, K. Schierle, and C. Kaminski, Structure-Specific Intrinsic Fluorescence of Protein Amyloids Used to Study their Kinetics of Aggregation, In Bionanoimaging, pp.147-155, 2014.
DOI : 10.1016/B978-0-12-394431-3.00013-4

J. A. Luiken and P. G. Bolhuis, Primary Nucleation Kinetics of Short Fibril-Forming Amyloidogenic Peptides, The Journal of Physical Chemistry B, vol.119, issue.39, pp.12568-12579
DOI : 10.1021/acs.jpcb.5b05799

S. K. Maji, J. J. Amsden, K. J. Rothschild, M. M. Condron, and D. B. Teplow, Biochemistry, vol.44, issue.40, pp.44-13365, 2005.
DOI : 10.1021/bi0508284

M. Hsieh, C. Liang, A. K. Mehta, D. G. Lynn, and M. A. Grover, Multistep Conformation Selection in Amyloid Assembly, Journal of the American Chemical Society, vol.139, issue.47, pp.139-17007
DOI : 10.1021/jacs.7b09362

J. E. Smith, C. Liang, M. Tseng, N. Li, S. Li et al., Defining the Dynamic Conformational Networks of Cross-?? Peptide Assembly, Israel Journal of Chemistry, vol.9, issue.6-7, pp.55-61
DOI : 10.1371/journal.pone.0094745

C. Liang, R. Ni, J. E. Smith, W. S. Childers, A. K. Mehta et al., Kinetic Intermediates in Amyloid Assembly, Journal of the American Chemical Society, vol.136, issue.43, pp.136-15146
DOI : 10.1021/ja508621b

P. Arosio, T. P. Knowles, and S. Linse, On the lag phase in amyloid fibril formation, Physical Chemistry Chemical Physics, vol.107, issue.12, pp.7606-7618
DOI : 10.1073/pnas.0913046107

L. Breydo and V. N. Uversky, Structural, morphological, and functional diversity of amyloid oligomers, FEBS Letters, vol.418, issue.19PartA, pp.589-2640
DOI : 10.1038/418291a

E. Pouget, N. Fay, E. Dujardin, N. Jamin, P. Berthault et al., Elucidation of the Self-Assembly Pathway of Lanreotide Octapeptide into ??-Sheet Nanotubes: Role of Two Stable Intermediates, Journal of the American Chemical Society, vol.132, issue.12, pp.132-4230, 2010.
DOI : 10.1021/ja9088023

URL : https://hal.archives-ouvertes.fr/hal-00470362

C. Valéry, F. Artzner, M. Paternostre, N. Nespovitaya, J. Gath et al., Peptide nanotubes: molecular organisations, self-assembly mechanisms and applications, Soft Matter, vol.24, issue.19, pp.9583-9628, 2011.
DOI : 10.1021/la802009t

A. J. Miles and B. A. Wallace, Circular dichroism spectroscopy of membrane proteins, Chemical Society Reviews, vol.1808, issue.18, pp.4859-4872
DOI : 10.1016/j.bbamem.2011.06.009

L. Bousset, J. Bonnefoy, Y. Sourigues, F. Wien, and R. Melki, Structure and Assembly Properties of the N-Terminal Domain of the Prion Ure2p in Isolation and in Its Natural Context, PLoS ONE, vol.5, issue.3, p.9760, 2010.
DOI : 10.1371/journal.pone.0009760.s005

URL : https://hal.archives-ouvertes.fr/hal-01183211

M. Bartolini, C. Bertucci, M. L. Bolognesi, A. Cavalli, C. Melchiorre et al., -42) Peptide Self-Aggregation: Elucidation of Inhibitors' Mechanism of Action, Insight Into the Kinetic of Amyloid ChemBioChem, vol.1, issue.817, pp.2152-2161, 2007.

B. A. Wallace, Synchrotron radiation circular-dichroism spectroscopy as a tool for investigating protein structures, Journal of Synchrotron Radiation, vol.7, issue.5, pp.289-295, 2000.
DOI : 10.1107/S0909049500009262

B. A. Wallace, Conformational Changes by Synchrotron Radiation Circular Dichroism Spectroscopy, Nature Structural Biology, vol.7, issue.9, p.708, 2000.
DOI : 10.1038/78915

B. A. Wallace and R. W. Janes, Synchrotron radiation circular dichroism spectroscopy of proteins: secondary structure, fold recognition and structural genomics, Current Opinion in Chemical Biology, vol.5, issue.5, pp.567-571, 2001.
DOI : 10.1016/S1367-5931(00)00243-X

A. Micsonai, F. Wien, L. Kernya, Y. Lee, Y. Goto et al., Accurate secondary structure prediction and fold recognition for circular dichroism spectroscopy, Proc. Natl. Acad. Sci. 2015, pp.112-3095
DOI : 10.1039/b306055c

URL : https://hal.archives-ouvertes.fr/hal-01485547

B. M. Bulheller, A. Rodger, and J. Hirst, Circular and linear dichroism of proteins, Physical Chemistry Chemical Physics, vol.28, issue.17, p.2020, 2007.
DOI : 10.1110/ps.8.2.370

M. Åkerlund, A. Carlsson, P. Melin, and J. Trojnar, The effect on the Human Uterus of Two Newly Developed Competitive Inhibitors of Oxytocin and Vasopressin, Acta Obstetricia et Gynecologica Scandinavica, vol.64, issue.6, pp.499-504, 1985.
DOI : 10.3109/00016348509156728

, Tractocile 7.5 mg/ml Concentrate for Solution for Infusion -Summary of Product Characteristics (SPC) -(eMC) http://www.medicines.org.uk/emc/medicine, 2017.

P. Melin, J. Trojnar, B. Johansson, H. Vilhardt, and M. Åkerlund, Synthetic antagonists of the myometrial response to vasopressin and oxytocin, Journal of Endocrinology, vol.111, issue.1, pp.125-131, 1986.
DOI : 10.1677/joe.0.1110125

F. Gobeaux, N. Fay, C. Tarabout, C. Mériadec, F. Meneau et al., Structural Role of Counterions Adsorbed on Self-Assembled Peptide Nanotubes, Journal of the American Chemical Society, vol.134, issue.1, pp.723-733
DOI : 10.1021/ja210299g

URL : https://hal.archives-ouvertes.fr/hal-00910874

A. Barth, The infrared absorption of amino acid side chains, Progress in Biophysics and Molecular Biology, vol.74, issue.3-5, pp.141-173, 2000.
DOI : 10.1016/S0079-6107(00)00021-3

S. M. Kelly and N. C. Price, The application of circular dichroism to studies of protein folding and unfolding, Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology, vol.1338, issue.2, pp.161-185, 1997.
DOI : 10.1016/S0167-4838(96)00190-2

S. M. Kelly and N. C. Price, The Use of Circular Dichroism in the Investigation of Protein Structure and Function, Current Protein & Peptide Science, vol.1, issue.4, pp.349-384, 2000.
DOI : 10.2174/1389203003381315

S. M. Kelly, T. J. Jess, and N. C. Price, How to study proteins by circular dichroism, Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, vol.1751, issue.2, pp.1751-119, 2005.
DOI : 10.1016/j.bbapap.2005.06.005

B. Ranjbar and P. Gill, Circular Dichroism Techniques: Biomolecular and Nanostructural Analyses- A Review, Chemical Biology & Drug Design, vol.446, issue.2, pp.101-120, 2009.
DOI : 10.1155/2002/280646

N. J. Greenfield, Methods to Estimate the Conformation of Proteins and Polypeptides from Circular Dichroism Data, Analytical Biochemistry, vol.235, issue.1, pp.1-10, 1996.
DOI : 10.1006/abio.1996.0084

N. J. Greenfield, Using circular dichroism spectra to estimate protein secondary structure, Nature Protocols, vol.79, issue.6, pp.2876-2890, 2007.
DOI : 10.1016/j.bbapap.2005.06.005

R. W. Woody, [4] Circular dichroism, In Methods in Enzymology Biochemical Spectroscopy, vol.246, pp.34-71, 1995.
DOI : 10.1016/0076-6879(95)46006-3

M. Crisma, G. D. Fasman, H. Balaram, and P. Balaram, Peptide models for ??-turns., International Journal of Peptide and Protein Research, vol.102, issue.4, pp.411-419, 1984.
DOI : 10.1111/j.1399-3011.1982.tb02608.x

U. Anand and M. Mukherjee, Exploring the Self-Assembly of a Short Aromatic A??(16???24) Peptide, Langmuir, vol.29, issue.8, 2013.
DOI : 10.1021/la304585a

E. S. Stevens, E. R. Morris, J. A. Charlton, and D. A. Rees, Vacuum ultraviolet circular dichroism of fibronectin dominant tyrosine effects, Journal of Molecular Biology, vol.197, issue.4, pp.743-745, 1987.
DOI : 10.1016/0022-2836(87)90481-5

L. H. Fornander, B. Feng, T. Beke-somfai, and B. Nordén, UV Transition Moments of Tyrosine, The Journal of Physical Chemistry B, vol.118, issue.31, pp.9247-9257
DOI : 10.1021/jp5065352

J. R. Lakowicz, H. Naiki, K. Higuchi, M. Hosokawa, and T. Takeda, Principles of Fluorescence Spectroscopy Fluorometric Determination of Amyloid Fibrils in Vitro Using the Fluorescent Dye, Thioflavin T1, Anal. Biochem, vol.177, issue.722, pp.244-249, 1989.

I. M. Kuznetsova, K. K. Turoverov, and V. N. Uversky, Use of the Phase Diagram Method to Analyze the Protein Unfolding-Refolding Reactions:?? Fishing Out the ???Invisible??? Intermediates, Journal of Proteome Research, vol.3, issue.3, pp.485-494, 2004.
DOI : 10.1021/pr034094y

L. A. Munishkina, C. Phelan, V. N. Uversky, and A. L. Fink, Biochemistry, vol.42, issue.9, pp.42-2720, 2003.
DOI : 10.1021/bi027166s

E. Gazit, A possible role for ??-stacking in the self-assembly of amyloid fibrils, The FASEB Journal, vol.16, issue.1, pp.77-83, 2002.
DOI : 10.1006/jmbi.2000.3840

S. M. Tracz, A. Abedini, M. Driscoll, and D. P. Raleigh, Role of Aromatic Interactions in Amyloid FormaYon by PepYdes Derived from Human Amylin ?, Biochemistry (Mosc, issue.50, pp.43-15901, 2004.

F. Bemporad, Assessing the role of aromatic residues in the amyloid aggregation of human muscle acylphosphatase, Protein Science, vol.15, issue.4, pp.862-870, 2006.
DOI : 10.1110/ps.051915806

K. E. Marshall, K. L. Morris, D. Charlton, N. O-'reilly, L. Lewis et al., Hydrophobic, Aromatic, and Electrostatic Interactions Play a Central Role in Amyloid Fibril Formation and Stability, Biochemistry, vol.50, issue.12, pp.50-2061, 2011.
DOI : 10.1021/bi101936c

A. J. Adler, N. J. Greenfield, and G. D. Fasman, [27] Circular dichroism and optical rotatory dispersion of proteins and polypeptides, Methods Enzym, vol.27, pp.675-735, 1973.
DOI : 10.1016/S0076-6879(73)27030-1

R. W. Woody, Aromatic side-chain contributions to the far ultraviolet circular dichroism of peptides and proteins, Biopolymers, vol.43, issue.6, pp.1451-1467, 1978.
DOI : 10.1088/0370-1298/69/3/307

M. C. Manning and R. W. Woody, Theoretical study of the contribution of aromatic side chains to the circular dichroism of basic bovine pancreatic trypsin inhibitor, Biochemistry, vol.28, issue.21, pp.28-8609, 1989.
DOI : 10.1021/bi00447a051

S. Vuilleumier, J. Sancho, R. Loewenthal, and A. R. Fersht, Circular dichroism studies of barnase and its mutants: Characterization of the contribution of aromatic side chains, Biochemistry, vol.32, issue.39, pp.32-10303, 1993.
DOI : 10.1021/bi00090a005

C. L. Nesloney and J. W. Kelly, Progress towards understanding ??-sheet structure, Bioorganic & Medicinal Chemistry, vol.4, issue.6, pp.739-766, 1996.
DOI : 10.1016/0968-0896(96)00051-X

A. Giuliani, F. Jamme, V. Rouam, F. Wien, J. Giorgetta et al., DISCO: a low-energy multipurpose beamline at synchrotron SOLEIL, Journal of Synchrotron Radiation, vol.16, issue.6, pp.16-835, 2009.
DOI : 10.1107/S0909049509034049

URL : https://hal.archives-ouvertes.fr/hal-01479318

F. Wien, M. Paternostre, F. Gobeaux, F. Artzner, and M. Refregiers, Calibration and quality assurance procedures at the far UV linear and circular dichroism experimental station DISCO, Journal of Physics: Conference Series, vol.425, issue.12, pp.425-122014, 2013.
DOI : 10.1088/1742-6596/425/12/122014

J. G. Lees, B. R. Smith, F. Wien, A. J. Miles, and B. A. Wallace, CDtool???an integrated software package for circular dichroism spectroscopic data processing, analysis, and archiving, Analytical Biochemistry, vol.332, issue.2, pp.285-289, 2004.
DOI : 10.1016/j.ab.2004.06.002

A. A. Dahab, D. El-hag, and A. Drake, Simultaneous determination of photometric accuracy during circular dichroism measurements, Analytical Methods, vol.26, issue.7, p.929, 2010.
DOI : 10.1039/b9ay00216b