Skip to Main content Skip to Navigation
Journal articles

Metabolomics fingerprint of coffee species determined by untargeted-profiling study using LC-HRMS

Abstract : Coffee bean extracts are consumed all over the world as beverage and there is a growing interest in coffee leaf extracts as food supplements. The wild diversity in Coffea (Rubiaceae) genus is large and could offer new opportunities and challenges. In the present work, a metabolomics approach was implemented to examine leaf chemical composition of 9 Coffea species grown in the same environmental conditions. Leaves were analyzed by LC-HRMS and a comprehensive statistical workflow was designed. It served for univariate hypothesis testing and multivariate modeling by PCA and partial PLS-DA on the Workflow4Metabolomics infrastructure. The first two axes of PCA and PLS-DA describes more than 40% of variances with good values of explained variances. This strategy permitted to investigate the metabolomics data and their relation with botanic and genetic informations. Finally, the identification of several key metabolites for the discrimination between species was further characterized.
Complete list of metadatas

https://hal-cea.archives-ouvertes.fr/cea-01765677
Contributor : Léna Le Roy <>
Submitted on : Monday, January 7, 2019 - 1:29:31 PM
Last modification on : Wednesday, July 15, 2020 - 8:56:03 AM
Long-term archiving on: : Monday, April 8, 2019 - 2:48:38 PM

File

souard2017.pdf
Files produced by the author(s)

Identifiers

Collections

Citation

Florence Souard, Cédric Delporte, Piet Stoffelen, Etienne Thévenot, Nausicaa Noret, et al.. Metabolomics fingerprint of coffee species determined by untargeted-profiling study using LC-HRMS. Food Chemistry, Elsevier, 2018, 245, pp.603 - 612. ⟨10.1016/j.foodchem.2017.10.022⟩. ⟨cea-01765677⟩

Share

Metrics

Record views

234

Files downloads

1032