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Abstract. A growing number of connected objects, with their high
performance and low-resources constraints, are embedding lightweight
ciphers for protecting the con�dentiality of the data they manipulate
or store. Since those objects are easily accessible, they are prone to a
whole range of physical attacks, one of which are fault attacks against
for which countermeasures are usually expensive to implement, especially
on o�-the-shelf devices. For such devices, we propose a new generic
software countermeasure, called the Internal Redundancy Countermeasure
(IRC), to thwart most fault attacks while preserving the performances of
the targeted cipher. We report practical experiments showing that IRC
successfully thwarts fault attacks on the block cipher PRIDE and on the
stream cipher TRIVIUM for which we protect both the initialization and
the keystream generation.

Keywords: IRC � Physical attacks � Fault attacks � SIMD instructions �
Software countermeasure � Lightweight cryptography � IoT.

1 Introduction

The expansion of the Internet of Things (IoT) brings many bene�ts but also raises
a number of issues with respect to security and privacy. Lightweight cryptography
(LWC) is investigated in order to address IoT security issues while seeking the
best trade-o� between security, power consumption, performance and footprint.
During the last few years, several lightweight block and stream ciphers have been
proposed, like for example KLEIN [23], PRESENT [14], PRINCE [ 16], PRIDE [ 5],
SIMON [8], SPECK [8], Grain [25], MICKEY [ 6] or TRIVIUM [ 17]. These ciphers
are mainly designed to resist black-box mathematical attacks. However, since
they are used in IoT devices in pervasive environments, implementation-related
attacks must also be considered.

Resistance against side channel attacks [30] is now considered as a valuable
property which should be taken into consideration when designing lightweight
ciphers as seen in ciphers like FIDES [12], PICARO [ 40], Zorro [22] and the
LS-designs family [24]. Another kind of physical attacks, based on fault injections,
must also be considered [9]. Many such attacks have been introduced [11], [37],
and the proposed countermeasures have signi�cant impacts on the cryptographic



implementations' performances and sizes, especially for o�-the-shelf devices with
no particular hardware mechanism to thwart such attacks.

In this paper, we introduce a new paradigm, called theInternal Redundancy
Countermeasure (IRC), for using spatial redundancies to thwart fault attacks.
First, we describe the concept of IRC based on the use of SIMD (Single Instruction
Multiple Data) instructions, which are increasingly available in o�-the-shelf IoT
devices: for 32-bit architectures, we work on 4 bytes in parallel. Then, we introduce
a method for implementing this countermeasure in a completely generic way, i.e.
independently of the cipher. Finally, we report practical experiments that show
that IRC successfully thwarts real fault injections on the block cipher PRIDE
and on the stream cipher TRIVIUM before discussing about the e�ciency of this
approach and concluding on some future work.

2 Fault Attacks

Usually, ciphers are constructed to resist black box mathematical cryptanalysis.
However, most of them do not take into account implementation-related issues
like vulnerabilities to physical attacks, which can be divided into three categories:
invasive like reverse engineering, non-invasive like side-channel analysis and
semi-invasive like fault attacks. The �rst one involves speci�c hardware-related
phenomena, very much related to the way the integrated circuits running the
ciphers are implemented. The second one is a particularly high threat to the
way cryptographic algorithms are implemented and e�cient countermeasures,
with limited impact on performance, have been proposed (techniques based on
masking for e.g). The third one has been the trickiest so far, as detailed below,
due to the complexity of the di�erent fault attack routes and the expensive
countermeasures. For this reason, we decided �rst to focus on fault attacks.

2.1 E�ects & Exploitation

Fault attacks consist in disturbing the behaviour of the circuit in order to alter
the correct execution of the cipher. The faults are injected into the device by
various means such as light pulses [44], laser [43], clock glitches [3], spikes on the
voltage supply [13] or electromagnetic (EM) perturbations [19]. They can have
di�erent e�ects on the encryption (or decryption) process like an instruction-skip
or an n-bit set, reset or �ip - commonly n = 1, 8 or 32 according to the chosen
injection means and to the targeted implementation. An instruction-skip can for
example allow to bypass the last key addition layer, common to many ciphers,
and thus to retrieve the key which is equal to the di�erence between the correct
and the faulty ciphertexts. A bit set, reset or �ip can allow to make a safe-error
analysis [28]. It consists in disturbing the content of a conditional loop dependent
on a key bit in order to retrieve its value by comparing the obtained ciphertext
with the correct one: in case of equality, the condition is false, otherwise it is
true. A bit set, reset or �ip can also allow to perform di�erential fault analysis
(DFA). DFA, originally described in [ 11], [15], consists in retrieving a secret key
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by comparing correct ciphertexts with faulty ones. DFA techniques have been
described and applied to most publicly known ciphers going from symmetric-key
ciphers like DES [11] or AES [42] to asymmetric ones like RSA [15] or even
more complex schemes like Pairings [33]. In the particular �eld of lightweight
cryptography, DFA have been proposed against ciphers like PRESENT [48],
SPECK [46], PRINCE [45], PRIDE [31] or TRIVIUM [37].

Yet, these references are not exhaustive in terms of fault e�ects and in terms
of their exploitation in real-life attacks. Thwarting fault attacks (at reasonable
cost) is of the utmost importance. But it is not straightforward to devise counter-
measures against such attacks because of the diversity of the possible injection
methods and because the usually deployed countermeasures (like redundancy,
error-correcting codes etc) have a serious impact on performances. In that respect
our work focuses on the implementation of an e�cient (in terms of computation
time, code size and/or power consumption) countermeasure for IoT devices.

2.2 Countermeasures

Fault attacks can be circumvented using hardware or software countermea-
sures [26]. Regarding hardware countermeasures, passive shields, which are metal
layers over the chip, allows to prevent optical fault injections [47]. However, it
is possible to remove passive shields using chemical means and fault injections
using EM pulses cannot be blocked by such shields neither. Active shields, which
consist of wire meshes that run signals over the chip's surface and detect any
interruption on a wire, are thus a very e�ective means to thwart many fault
attacks. Furthermore, the use of light sensors [21] allows to detect anomalies in
the circuit's behavior. The main drawback of such hardware countermeasures is
their cost. The use of asynchronous design techniques as described in [38] can
provide coding techniques that can detect some types of fault injections. Another
proposed hardware solution is based on the insertion of parity checks on the data
paths [10,27] in order to detect errors introduced by malicious fault injections.
A di�erent way of handling this security problem in hardware is to analyze the
circuit at design time and adapt the countermeasures until all attacks fail at
least at simulation time. This design-time security analysis is proposed in [34].
The problem with hardware countermeasures is that even though simulations
may show that they are e�cient, there is no absolute guarantee that this will
be the case on the �nal chip where other considerations like �nal place & route,
manufacturing processes etc. may have a huge impact on the countermeasures'
e�ciency. And by the time the �nal chips are obtained, if a security �aw is
identi�ed, it would be expensive to have another iteration of the design cycle to
�patch� the design in hardware (in some cases metal �xes may be used but this
would not apply to any part of the circuit). It is hence highly recommended to
use these hardware countermeasures with software ones.

One of the basic principle behind most software countermeasures is to make
sure that all the calculations' timings are independent from the data or key
being manipulated, and to `hide' the internal calculations of the cryptographic
algorithm so that the attacker has no mastery of the data being manipulated and
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no means to understand what is happening. In the case of Public Key Algorithms
like RSA (or ECC), techniques like message blindingand exponent blindinghave
been proposed [29,35]. Similar blinding techniques called data randomisation or
data masking[4] have been proposed for Secret Key Algorithms. More generally,
masking has been shown to o�er protection against some fault attacks like
DFA [ 32]. However, such an approach cannot thwart fault attacks like statistical
fault attacks [20] or safe-error analyses. Redundancy is thus a very e�cient means
to thwart this latter kind of attacks. It consists in computing the same operations
on one or several copies of the data, providing either a spatial or a temporal
redundancy, and then in comparing the obtained results. Hence, to perform a
fault attack, an attacker must obtain the same fault on both computations. It
is thus possible to only detect the fault by trapping the system when all the
copies do not all lead to the same end result or to correct the fault by applying a
majority vote (by returning the one which appears the most) using 3 or more
data copies. Thereby, redundancy allows to prevent all fault attacks without
considering any fault model since it directly prevents the attacker from getting
the fault result. However, each spatial (resp. temporal) copy costs a memory (resp.
time) overhead equal to that of an additional operations [36]. Therefore, more
and more research focus on trying to perform such redundancies at lower costs.

2.3 Intra-Instruction Redundancy

Recently, a countermeasure based on Intra-Instruction Redundancy [39] was
proposed to thwart fault attacks. It consists in using a bit-sliced implementation
of a given cipher applied on 32 input blocks. The aim is to exploit a 32-bit
architecture - which is the most widely used architecture in IoT devices - taking
as input 15 blocks of data interleaved with 15 blocks of redundancy and 2 reference
blocks. The reference blocks are constant inputs (plaintexts and keys) for which
the corresponding ciphertexts are known. Figure 1 shows an example of the
composition of the input words protected by IIR applied on the 128-bit plaintexts
Pi = P 1

i � � � P128
i with 0 ¤ i ¤ 14 and using two 128-bit reference plaintexts
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0 � � � RP128

0 and RP1 = RP 1
1 � � � RP128

1 .

12
8

in
pu

t
w

or
ds

RP1
0

RP2
0

RP127
0

RP128
0

RP1
1

RP2
1

RP127
1

RP128
1

P1
0

P2
0

P127
0

P128
0

P1
0

P2
0

P127
0

P128
0

P1
1

P2
1

P127
1

P128
1

P1
1

P2
1

P127
1

P128
1

� � �

� � �

� � �

� � �

� � �

� � �

� � �

� � �

P1
14

P2
14

P127
14

P128
14

P1
14

P2
14

P127
14

P128
14

...

Bit 1

Bit 2

Bit 127

Bit 128

Figure 1: Bit-slicing with Intra-Instruction Redundancy
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IIR principally allows to thwart mono-bit fault models thanks to the redun-
dancy and also to thwart instruction skip thanks to the reference blocks. Indeed,
an instruction skip will have the e�ect of changing the value of the reference
block and will therefore be detected at the end of the encryption or decryption.
Unfortunately, multi-bit fault models can still be e�ective: for example, a two-bit
fault on the two copies of a data block will be undetectable. Moreover, IIR
imposes to use, in most cases, a less e�cient implementation of the cipher due to
the Boolean circuit transformation overhead necessary for bit-slicing [41], to take
as input 15 blocks of data per encryption and to usen words in order to store
and manipulate an n-bit input. However, using reference blocks as part of a coun-
termeasure is very e�ective against instruction skip. Thereby, we investigated the
possibility of keeping this property while using a conventional (i.e. non-bitscliced)
implementation of a cipher. Moreover, we also looked at the possibility to start
from an e�cient 8-bit implementation - which is usually the preferred option for
lightweight ciphers - on a 32-bit architecture. Hence, we propose the following
Internal Redundancy Countermeasure (IRC).

3 Internal Redundancy Countermeasure

3.1 General Principle

It is common to use a 32-bit implementation of a cipher on a 32-bit architecture
in order to fully exploit the architecture's capabilities. However, the use of spatial
redundancy in this case requires a larger memory overhead. In order to decrease it,
we propose to use an e�cient 8-bit implementation of the cipher simultaneously
applied on 4 blocks on a 32-bit word. Indeed, we replace each 8-bit operator
by means of a single stream of 32-bit instructions corresponding to the same
operation performed independently on each byte in a SIMD fashion. This has a
timing overhead since it generally requires more instructions than the original 32-
bit implementation would but it highly decreases the required memory overhead
since it uses a single stream of instructions instead of 4 parallel ones (which is
not always possible according to the architecture). IRC is based on this concept
but also uses reference blocks to increase the countermeasure's e�ciency. The
manipulated words are thus composed of one data byte interleaved with the
corresponding byte of the reference block and two copies depending on the used
cipher. Figure 2 shows a typical example of a 32-bit word as used in IRC.

Ref.

8-bit

Data

8-bit

Ref.

8-bit

Data

8-bit

Figure 2: IRC's 32-bit word structure

Then, IRC executes the cipher by means of a single stream of 32-bit instruc-
tions operating independently on each byte. Finally, at the end of encryption or
decryption, IRC makes comparisons involving the di�erent copies and the stored
reference ciphertext. IRC expects all corresponding copies to be equal to each
other and each obtained reference ciphertext to be in turn equal to the stored
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reference ciphertext. Therefore, to perform a fault injection, an attacker must
obtain the same fault on each copy of the data without a�ecting the reference
block. This case is extremely di�cult to control for the attacker in practice,
especially when the reference block is interleaved between copies of the data.
Moreover, it is possible to apply an 8-bit rotation to each word as described
in Figure 2 at one or more temporal positions throughout the encryption or
decryption since the operations are performed independently on each byte. It
allows to make the positions of the data blocks unpredictable to the attacker.
It is then possible to retrieve the data at the end of encryption or decryption
by comparing the obtained bytes with the stored reference block. Now we will
describe the di�erent ways of using IRC depending on the type of cipher targeted.

3.2 IRC on Block Ciphers

The construction of the words depends on the required security level. Generally,
there are two possibilities to prevent the same fault onk spatial copies of blocks:

i. Fault detection: usek � 1 copies of the data in each word and trap the system
when they do not all lead to the same end result. Note that, in this case, an
attacker can make a safe-error analysis since she must only know that a fault
has been injected to perform this kind of attacks.

ii. Fault correction: use2k � 1 copies of the data in each word and return the
one which appears the most, by applying a majority vote among them. It
provides in this case an additional security against the safe-error attacks.

IRC o�ers the possibility of having either one of these two strategies. For
fault detection, a representation as the one given in Figure 2 can be used. In
fault correction mode, IRC can use a single reference block split into two nibbles
(4-bit words). Then, each nibble is arranged between two copies of the data as
depicted on Figure 3.

Data

8-bit

Data

8-bit

Data

8-bit

Ref.

4-bit

Ref.

4-bit

Figure 3: IRC's 32-bit word for a majority vote

The counterpart of this latter method is that the nonlinear operators are
more complex to implement, generally they are more expensive since IRC cannot
use SIMD instructions. Now we will detail the case of the fault detection. Let
E be an 8-bit implementation of a block cipher which takes ab-byte plaintext
P = P 1 � � � Pb as input, uses ab1-byte key K = K 1 � � � Kb1 and produces ab-byte
ciphertext C = C 1 � � � Cb. IRC uses ab-byte reference plaintext RP = RP1 � � � RPb,
a b1-byte reference key RK = RK1 � � � RK b1 and a b-byte reference ciphertext
RC = RC 1 � � � RCb. First, for each i P t1; � � � ; bu, IRC stores in a 32-bit word the
byte Pi concatenated with RPi , Pi and RPi as illustrated in Figure 4.
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P1 � � �� � � � � �� � �PlainText

� � �

Pb

RP1

...

RPb

Ref. PT

RP1 P1 RP1 P1 � � �Input RPb Pb RPb Pb

Figure 4: IRC on block ciphers - composition of words

IRC also stores, for eachi P t1; � � � ; b1u, the byte K i concatenated with RKi ,
K i and RK i . Then, it executes the cipher by means of a single stream of 32-bit
instructions operating independently on each byte, denoted by IRC(E), to obtain,
for each i P t1; � � � ; bu, the byte Ci concatenated with RCi , Ci and RCi . Figure 5
shows the execution of IRC(E).

RP1 P1 RP1 P1 � � �Input RPb Pb RPb Pb

IRC( E)

RC1 C1 RC1 C1 � � �Output RCb Cb RCb Cb

RK 1 K 1 RK 1 K 1

...Key

RK b1 K b1 RK b1 K b1

Figure 5: IRC on block ciphers - execution of IRC(E)

Finally, it makes comparisons involving each copy and the stored reference
ciphertext. It then returns the ciphertext only if all the copies lead to the same
result as illustrated in Figure 6.

RC1 C1 RC1 C1 � � �Output RCb Cb RCb Cb

RC1

...

RCb

Ref. CT

CMP � � �

CMP CMP

CMP

AND ANDAND

CipherText C1 � � � Cb Return Error
01

Figure 6: IRC on block ciphers - comparisons
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Note that this last stage can be done with only 2 comparisons: �rst by
comparing the last 16 bits of the word with the �rst 16 bits, then by comparing
the stored reference byte with the obtained one.

3.3 IRC on Stream Ciphers

Modern stream ciphers are generally composed of two parts:

i. The �rst one is an initialization step: a function maps the secret key and a
public initialization vector to an internal state S 0. Then, another function E
is applied to S0 to produce an pre-keystream-generation internal state S1.

ii. The second one is the keystream generation: a functionI is applied to S1

which modi�es its value and generates a byte of keystream (in the case of an
8-bit implementation). It produces as many keystream bytes as necessary to
add to the plaintext in order to produce the ciphertext.

In this context, IRC consists in �rst applying to the initialization step the
same method as previously described on block ciphers. The initial internal state
IRC(RS0,S0) is composed of the internal state S0, a reference internal state
RS0 and their respective copies. RS0 is obtained from a reference key and iv,
which can be themselves easily generated (rather than stored). IRC appliesE to
IRC(RS0,S0) by means of a single stream of instructions operating independently
on each byte, operation that we shall denote by IRC(E). It obtains an internal
state IRC(RS1,S1) composed of S1, RS1 and their copies. Figure 7 shows the
initialization step protected by IRC in the case of a fault detection, where
Sn;i (resp. RSn;i ) denotes the i -th byte of the internal state Sn (resp. of RSn ).
Moreover, each operation in Figure 7 is made for alli P t1; � � � ; bu with b the
number of bytes of the internal state.

S0;iInternal State

RS0;i

Ref. IS

RS0;i S0;i RS0;i S0;i
IRC

(RS0 ,S0)

IRC( E)

RS1;i S1;i RS1;i S1;i
IRC

(RS1 ,S1)

Figure 7: IRC on stream ciphers - initialization step

Then, each byte of the obtained internal state S1 is stored in temporary
registers and the function I is applied to IRC(RS1,S1) also by means of a single
stream of instructions operating independently on each byte, denoted by IRC(I ),
to generate the �rst keystream word IRC(RK,K 1) and a new internal state
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IRC(RS2,S2). IRC(RK,K 1) is composed of the �rst keystream byte K1, the
reference keystream byte RK and their copies. IRC compares the di�erent copies
of the keystream and compares the obtained reference keystream bytes with the
stored one to ensure the correct value of K1. It then stores its value instead of
the reference keystream. Figure 8 shows the �rst keystream generation protected
by IRC with the same notation as previously.

S1;i

Temp

RS1;i S1;i RS1;i S1;i
IRC

(RS1 ,S1)

IRC( I ) RK K 1 RK K 1
IRC

(RK,K 1)

RK

Ref. K

CMP

CMP

AND

0

Return Error

K 1

Ref. K

RS2;i S2;i RS2;i S2;i
IRC

(RS2 ,S2)

Figure 8: IRC on stream ciphers - �rst keystream byte generation

However, although the keystream byte is correct, it is possible that IRC(RS2,S2)
contains a fault since only a part of the internal state is generally used to produce
the keystream. Consequently, IRC makes also comparisons on IRC(RS2,S2) to
ensure its correct value. Then, it replaces in each word the obtained reference
internal state RS2 by S1 in order to protect each new keystream byte by the
previous one as illustrated in Figure 9.

RS2;i S2;i RS2;i S2;i
IRC

(RS2 ,S2)

RS2;i

Ref. IS

CMP

CMP

AND

0

Return Error
S1;i

Temp

IRC
(S1 ,S2)

S1;i S2;i S1;i S2;i

Figure 9: IRC on stream ciphers - comparisons

Each generated keystream word is hence composed of the actual keystream
byte, the previous one and their respective copies. IRC can therefore make
comparisons between the copies of the keystream bytes and with the previously
stored keystream byte. Figure 10 shows the generation of the following keystream
bytes protected by IRC also with the same notation as previously.
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IRC
(S1 ,S2)

S1;i S2;i S1;i S2;i

IRC( I ) K 1 K 2 K 1 K 2
IRC

(K 1 ,K 2)

K 1

Ref. K

CMP

CMP

AND

0

Return Error

K 2

Ref. K

S2;i S3;i S2;i S3;i
IRC

(S2 ,S3)

IRC( I )

Figure 10: IRC on stream ciphers - generation of the following keystream bytes

To determine when the �rst byte of keystream K 1 is returned, two options
are possible depending on the required security level:

i. Return K 1 after the comparisons in IRC(RK,K 1): we obtain a security similar
to the case previously described for block ciphers.

ii. Return K 1 after the comparisons in IRC(K1,K2): we obtain an additional
temporal redundancy since IRC generates K1 twice consecutively and com-
pares the generated values. Such an option has an overhead of one use of the
iteration I , which has generally a low cost.

It is also possible to use two temporal redundancies by replacing in each
word of IRC(S2,S3) the �rst byte S 2 by S1. In this case, IRC returns K1 after
the comparisons in IRC(K2,K3). Such an option has an overhead of two uses of
the iteration I and needs an additional temporary register to store K2 after the
comparisons in IRC(K1,K2), which is not a high cost to pay for two additional
temporal redundancies.

3.4 IRC Requirements

First, the reference block must be chosen such that each of its bytes is never, or
as little as possible, equal to 0xFF (resp. 0x00) throughout the encryption or
decryption, otherwise a set (resp. reset) of the whole state allows the attacker to
obtain an undetected fault since it does not a�ect the reference block. It must also
be chosen such that each of its bytes is always, or as much as possible, a�ected
by the operations that the cipher performs, otherwise an instruction skip allows
the attacker to obtain an undetected fault. Both properties must also be satis�ed
for each of its nibbles in the case of a majority vote. It is possible to obtain such
properties by trying several random keys and plaintexts until satisfying both
properties throughout the encryption or decryption, i.e. using the following code
after each instruction applied to a byte B:
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uint8_t temp ;
temp =B;
� � �
/ � Instruction applied to B � /
� � �
i f pB==0x00||B==0xf f ||B==tempqt

return 0 ;u

Note it is also possible to use two di�erent reference blocks to satisfy both prop-
erties more easily. Then, we have to exclude ciphers which use conditional
instructions depending on the value of an intermediate variable like the irregular
clocking in MICKEY [ 6]. It is di�cult to deploy IRC in this case since the
reference block can have a di�erent conditional value. It is nevertheless possible
to replace the conditional instructions by making them dependent on both values.
However, it is quite expensive since it requires additional operators, but such
instructions are not recommended since they can allow to make safe-error attacks
because of the conditional loop.

3.5 Implementation

Now we will describe how operators usually working on bytes can be translated
to work on SIMD words. Since most lightweight ciphers are designed to have
e�cient 8-bit implementations, they mainly use bitwise operators like logical
AND, OR, XOR, shift, rotation etc. and also nonlinear operators like modular
addition and multiplication, etc. on bytes. Bitwise operators being intrinsically
SIMD, they are straightforward to use for IRC. In the absence of a suitable
SIMD instruction in the ISA (Instruction Set Architecture), IRC needs masks to
implement nonlinear operators using few additional instructions, systematically
operating as a whole on all the bytes of a 32-bit word in order to ensure the
unicity of the instruction stream. Note that several lightweight block ciphers use
S-boxes as nonlinear building-blocks. IRC thus uses the algebraic normal forms
of the coordinates of the S-boxes which allow to implement them using only
bitwise operators. Lastly, from a software engineering point of view, it is possible
to bene�t from the operator overloading capabilities of a number of languages
(like C++) in order to protect a reference implementation without modifying
its code. An example of the code in language C++ of some nonlinear operators
for a 32-bit architecture is given in Appendix A. Therefore, we can deploy IRC
directly from a parametric reference code of a cipher:

template<typename byte>
void Cipherpbyte � state, byte � key, � � � q t � � � u

without having to write a dedicated compiler. Indeed, we can simply instantiate
the unprotected cipher from the instruction:

Cipher<uint8_t> pstate, key, � � � q;

and the cipher protected by IRC from the instruction:
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Cipher<IRC> pstate, key, � � � q;

Additionally, most modern compilers (like GCC) provide (non standard) vec-
tor extensions which allow to write portable code and to automatically bene�t
from the SIMD instructions available in the targeted ISA when the appropriate
compiler options are used.

4 Practical Implementations & Tests

In order to test IRC, we deployed it in the �fault detection mode� as previously de-
scribed on two di�erent 32-bit architectures: an ARM Cortex-M3 micro-controller
on which we tested our own overloaded operators and an ARM Cortex-M4 micro-
controller in order to exploit the SIMD instructions it provides. We used these two
micro-controllers since they are quite representative of the o�-the-shelf devices
used for IoT. In both cases, we implemented and executed implementations of
one representative lightweight block cipher PRIDE and of one representative
stream cipher TRIVIUM with and without IRC. Then, we compared the resulting
performances and we analyzed the resistance of IRC against fault attacks in
practice. Note that in both cases no other countermeasure was implemented.

4.1 IRC on PRIDE

PRIDE is a block cipher introduced by Albrecht et al. [ 5] in 2014. It is one of the
most e�cient lightweight block cipher in terms of software implementation as
shown by the performance comparisons given in [5,7]. The speci�cations of PRIDE
are given in [5]. In Table 1 we compare the performances and footprints of the
8-bit reference implementation of PRIDE given in [2] and the same implementa-
tion protected by means of IRC with the reference plaintext 0x19cb6e3cc15d254f,
the reference key 0xb8f653fa05f4f9c39889ce4bb9015865 and the corresponding
reference ciphertext 0x8b8cc44779935cf2. The used reference block allows us to
comply with the requirements (bytes never equal to 0x00 or 0xFF and always
a�ected by the operations executed during the ciphering) on 97% of the imple-
mentation (with a full protection on the �rst and the last two rounds which
generally are the areas targeted for DFA). It is possible to obtain a complete
protection on the full implementation using in addition the reference plaintext
0x32c46c37168a7248, the reference key 0x485a895ac53577e7�bd140564f5ca45 and
the corresponding reference ciphertext 0x5b2569f55b45e69c. To be fair, we also
include the performances of the 32-bit optimized (hence di�erent) implementation
of that algorithm given in [ 31] which of course achieves higher throughput on a
32-bit platform since it fully exploits the architecture.

Table 1: Performance comparisons for encrypting a 64-bit plaintext
ARM Cortex-M3 ARM Cortex-M4

Time (cycles) Size (bytes) Time (cycles) Size (bytes)

32-bit implementation 2852 464 2804 416
8-bit implementation 4370 558 4347 558
IRC implementation 6304 886 5108 636
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PRIDE performs 4 additions on bytes per round. Thereby, the ARM Cortex-
M4 micro-controller allows to obtain better performances thanks to the SIMD
uadd8 ARM instruction as we can see in Table 1. However, PRIDE also performs
several shifts on bytes, which need some masks and cannot be replaced by SIMD
instructions. With this approach, we have as much as 4 executions of the cipher
done in parallel (spatial redundancy) with two copies of the actual ciphered block
and two copies of the reference block on one single core. If we were to achieve
the same level of protection but without this approach, it would cost the same
overhead as with 4 classical spatial copies of the data, i.e. it would require 4 times
more memory. Thereby, on the one hand IRC allows to use spatial redundancy
on this kind of device, and on the other hand even if we could use the basic
redundancy methods, IRC would remain better since it allows to signi�cantly
decrease the required size, yet to the detriment of the execution time. Now we
will provide the results we have obtained by testing some physical attacks on the
ARM Cortex-M3 micro-controller implementing PRIDE protected by IRC.

Fault Attacks on IRC-protected PRIDE: In order to test IRC, we injected
faults into the chip at di�erent temporal locations using EM pulses as in [31]
because with this approach we did not need to decapsulate the chip and we
were able to inject faults at precise enough instants. The EM pulse used had a
duration of 200ns, the applied voltage across the loop was varied by steps of 1
V between 180V and 219V and we injected 250 pulses by targeting the middle
of the die. There are various possibilities to detect faults from IRC in a fault
detection mode: thanks to the spatial redundancy, to the �rst reference block
or to the second one. Thus, for each fault, we examined the value of the faulty
ciphertext and how the fault has been detected. In total, we obtained 4823 faults
from 10,000 EM injections. Among these faults 3107 were UART communication
faults and 1716 were not. Then, IRC detected all the faults: 3444 were detected
thanks to the spatial redundancy, 4805 thanks to the �rst reference block and
all the 4823 thanks to the second one. Finally, we detected more faults thanks
to the reference blocks: these faults actually made instruction skips and have
thereby not been detected by the spatial redundancy. However, some faults have
been only detected by the spatial redundancy: they have only a�ected one byte
of the data. Therefore, IRC allowed us to fully thwart such a fault injection and
the use of the spatial redundancy and of the reference block was necessary to
detect all the faults.

4.2 IRC on TRIVIUM

TRIVIUM is a stream cipher introduced by De Cannière and Preneel [17], [18] in
2006. It belongs to the eSTREAM portfolio of recommended stream ciphers and
has been speci�ed as an ISO standard [1]. The speci�cations of TRIVIUM are
given in [17]. In Table 2, we compare the performances and footprints of an 8-bit
implementation of TRIVIUM detailed in Appendix B and the same implementa-
tion protected by means of IRC with the reference iv 0x73ad56fe566b227847f8,
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the reference key 0x4b752b672d363d93e7a3 and the reference internal state
0xd8b252aa20ecb9afb36cf7f4a42d1b1839fd86e63b68491fc3925 97c9477f22cd19562de.
The used reference block allows us to comply with the requirements on 90%
of the implementation. It is possible to obtain a complete protection on the
full implementation using in addition the reference iv 0xe475605c64c6d25b5f18,
the reference key 0x0bcc0de165fa80897046 and the reference internal state
0xc606f18d33cec788fa981538f612d0cc24e440e2c901e50bd380c19 20cb013fc70d05cf8.
To be fair, we also include the performances of another 32-bit optimized imple-
mentation of that algorithm given in Appendix C.

Table 2: Performance comparisons to generate 32 bits of keystream
ARM Cortex-M3 ARM Cortex-M4

Time (cycles) Size (bytes) Time (cycles) Size (bytes)

32-bit implementation 168 292 166 292
8-bit implementation 852 296 820 296
IRC implementation 1172 448 1144 448

TRIVIUM uses only bitwise operators as well as several shifts which need
some masks to be implemented in the case of IRC. Thereby, SIMD instructions
are not used on the ARM Cortex-M4 micro-controller which implies that similar
performances are obtained on both micro-controllers. Finally, although we cannot
use basic redundancy methods, IRC allows to signi�cantly decrease the required
size compared to them to the detriment of the execution time which has an
overhead larger than in the case of PRIDE since the 32-bit implementation of
TRIVIUM is much faster than its 8-bit implementation (it requires 4 times less
instructions to produce the same keystream length). Now we will describe as
previously the results we obtained by testing some physical attacks on the ARM
Cortex-M3 micro-controller implementing TRIVIUM protected by IRC.

Fault Attacks on IRC-protected TRIVIUM: In order to test IRC, we
injected faults into the chip at di�erent temporal locations using EM pulses
with the same set-up as previously described. After the initialization process,
we generated 10 bytes of keystream. In the case of TRIVIUM, there are also
various possibilities to detect faults from IRC in a fault detection mode: thanks
to the spatial redundancy, to the �rst temporal redundancy or to the second one.
Thus, for each fault, we also examined the value of the faulty ciphertext and how
the fault has been detected. In total, we obtained 3703 faults from 10,000 EM
injections. Among these faults 3437 were UART faults and 266 were not. IRC
detected all the faults: 3690 thanks to the spatial redundancy, 2491 thanks to
the �rst temporal redundancy and 2915 thanks to the second one. This time, we
detected more faults thanks to the spatial redundancy: these faults have only
a�ected one byte of the data and have thereby not been detected by the temporal
redundancy. We also observed that some faults have only been detected by the
temporal redundancy: they have produced instruction skips. Therefore, IRC is
highly e�cient to thwart such a fault injection and, once again, the use of both
spatial and temporal redundancies was necessary to detect all the faults.
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4.3 What about side channel attacks?

Although IRC is not intended to provide resistance against side channel attacks,
we also tested to perform experimentally such attacks on the ARM Cortex-M3
micro-controller implementing PRIDE protected by IRC.

Electromagnetic radiations analysis. First, to probe further capabilities of IRC,
we performed a electromagnetic radiations analysis. The aim is to identify the
operations made by the cipher. Figure 11 shows the obtained curves which allow
us to identify all the steps of PRIDE despite IRC.
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Figure 11: Electromagnetic radiations analysis of PRIDE

Correlation electromagnetic analysis. Then, we implemented the correlation
electromagnetic analysis (CEMA) described in [2]. PRIDE was executed for 1000
random plaintexts with the �xed key 0xa371b246f90cf582e417d148e239ca5d. The
chosen reference block was the last test vector given in [5]. The last substitution
layer was targeted for the data acquisition and EM traces were captured with 7500
points per encryption. Thereafter, the matrix of obtained traces is denoted byT.

T �

�

�
�
�
�

T0

T2
...

T7499

�

�
�
�
�

�

�

�
�
�
�

t0;0 t1;1 � � � t0;999

t2;0 t2;1 � � � t2;999
...

...
. . .

...
t7499;1 t7499;2 � � � t7499;999

�

�
�
�
�

: (1)

To recover each bytePpk0qi for i P t0; � � � ; 7u, we �rst derive the estimation
matrices E i from the Hamming weight of each ciphertext Cj for j P t0; � � � ; 999u
XORed to each key hypothesisHK P t0; � � � ; 255u.
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where ei
H K ;j � HW pCj;i ` HK q. Then, we perform a classical CEMA attack

(also calledVertical ) by computing the correlation coe�cient matrices P i , for
i P t0; � � � ; 7u, from the Pearson correlation coe�cient between E i and T, namely
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where � i
t;H K

� CorrpTt ; E i
H K

q. Figure 12 shows the plot corresponding toP0

on the interval 1100 to 2100 points in abscissa. From Figure 12, we can clearly
distinguish the highest value which was 0xf3. Finally, we retrieve the correct
value of Ppk0q = 0xf3f721cb1c882658 from allP i .

Figure 12: Key recovery ofPpk0q0

We also conducted the previously CEMA with the same complexity by
changing the reference block at each execution without knowledge or assumption
about it. It added only a negligible noise which did not prevent the attack.
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The described CEMA targets the strb ARM instruction as explained in [2].
Therefore, according to our results, we believe that this instruction is done byte
by byte, which explains why IRC did not increase the complexity to the CEMA.
It is possible that IRC increases the complexity of other side-channel attacks
but we believe that it does not provide real protection against them. However,
it provides a very high security against fault attacks: from our experience, we
believe that the kind of faults required to thwart IRC is nowadays extremely
di�cult to obtain for an attacker even with a laser injection which is currently
the most precise injection mean.

5 Generalization of IRC

The principle behind IRC can be generalised to architectures with a di�erent data
path width. For example, IRC can make a fault detection or a fault correction
using two di�erent blocks of data on a 64-bit architecture if we organize each
word as shown in Figure 13.
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8-bit

Ref.

8-bit

Data1

8-bit

Data2

8-bit

Ref.

8-bit

Data1

8-bit

Data2

8-bit

Figure 13: IRC protecting two blocks of data on 64-bit words

Indeed, IRC executes the cipher by means of a single stream of 64-bit instruc-
tions systematically operating independently on each byte. Then, at the end of
encryption or decryption, IRC can make a fault detection (or a fault correction)
involving each copy and the stored reference ciphertext to detect (or mask) all
the faults except those having the same impact on the three (or on two or more)
copies of the data without a�ecting the reference blocks.

IRC can also make only a fault detection using three di�erent blocks of data
with an organization as depicted in Figure 14.
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Figure 14: IRC protecting three blocks of data on 64-bit words

It is also possible to increase the security level by taking only one data block
as input but we believe that it is not necessary in most cases.

More generally, IRC can turn any m-bit implementation on an `m-bit archi-
tecture applying the same concept provided that` ¥ 3 in order to include at
least two copies of the data and one reference block.
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6 Conclusion & Discussion

In this paper we describe the Internal Redundancy Countermeasure and validate
its e�ciency in thwarting fault attacks against a representative lightweight block
cipher PRIDE and a stream cipher TRIVIUM running on two di�erent 32-bit
architectures: an ARM Cortex-M3 micro-controller on which we tested our own
overloaded operators and an ARM Cortex-M4 micro-controller where the available
SIMD instructions enhanced the e�ciency of the countermeasure. IRC consists
in using the same bitwise operators and needs masks to implement nonlinear
operators on bytes using few additional instructions systematically operating as a
whole on the bytes of a word in order to ensure the uniqueness of the instruction
stream. We also show that it is also possible to apply IRC on a 64-bit architecture
for which we believe it is more interesting to include two di�erent data blocks
within each input word. To our best knowledge, the one work that comes close to
what we propose has been reported in [39]. However the IIR [39] uses a bit-sliced
implementation of the cipher which is less e�cient than the IRC we propose: IIR
is applied to 15 blocks of data, which increases the latency since we have to wait
until the end of the encryption of the 15 blocks, which is a major drawback for
lightweight applications. Moreover, IRC stores each block of reference between
two blocks of data in order to avoid faults on consecutive bits, thus providing
better security than IIR.

The overhead of IRC depends on the targeted cipher as illustrated in this
paper. However these impacts have to be leveraged with the high fault coverage
achieved since it detected all the faults injected by EM pulses. Moreover this
scheme has been shown to work on a widely spread processor core and hence
does not need any hardware modi�cation with respect to the already existing
processors embedding SIMD instructions. By illustrating the feasibility and
e�ciency of this approach, we hope to encourage chip manufacturers to integrate
dedicated SIMD instructions to help tackle such a complex issue as protection
against fault attacks. One further step in this research work will to be investigate
how to e�ciently enhance this scheme to provide resistance against side channel
attacks.
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Générale de l'Armement, France).
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A Class IRC in C++ language

In order to test IRC, we created a class in C++ language which implements it in
a completely generic way � i.e. independently of the cipher. The class provides
all the overloaded operators that one wants to work on bytes such as:

class IRCt
private :uniont

uint8_t bytes r4s;
uint32_t word ;

ustate;
public :
IRCpqtstate.word=0x0;u
IRCpuint8_t data , uint8_tknownPT qt

state.bytesr0s=knownPT;
state.bytesr1s=data;
state.bytesr2s=knownPT;
state.bytesr3s=data;u

IRC &operator>>=pconst uint8_tshift qt
static const uint32_t mask r9s = t

0xf f f f f f f f ,0x7f7f7f7f,0x3f3f3f3f,
0x1f1f1f1f,0x0f0f0f0f,0x07070707,
0x03030303,0x01010101,0x00000000u;

assertpshift>=0 && shift<=8q;
state.word>>=shift ;
state.word&=maskrshifts;
return � this ;u

IRC operator>>pconst int shift qconstt
IRC resp� thisq;
res>>=shift ;
return res;u

IRC &operator+=pconst IRC &otherqt
uint32_t result =state.word&0x7f7f7f7f;
result+=other.state.word&0x7f7f7f7f;
uint32_t carry =result&0x80808080;
result&=0x7f7f7f7f;
carry+=state.word&0x80808080;
carry+=other.state.word&0x80808080;
carry&=0x80808080;
state.word=result|carry ;
return � this ;u

IRC &operator+=pconst uint8_tbyte qt
IRC tmp pbyte,byteq;
p� this q+=tmp;
return � this ;u
� � �

u
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B TRIVIUM 8-bit implementation

In this section, we provide the 8-bit software implementation of TRIVIUM that
we used in this paper. First, we introduce the 8-bit keystream generation from
the 36 bytes of the internal state by the function NextByte:

static const uint8_t T r72s = t 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32,
33, 34, 35, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35u;
uint8_t k =0;

uint8_t NextByte puint8_t s r36sqt
uint8_t t1 ,t2,t3,z;
// Step 1: Update of the temporary registers and the output
// t1 Ð s58� � �s65` s85� � �s92
t1=psrTr7+kss<<2|srTr8+kss>>6q� psrTr10+kss<<5|srTr11+kss>>3q;
// t2 Ð s154� � �s161` s169� � �s176
t2=psrTr19+kss<<2|srTr20+kss>>6q� psrTr21+kss<<1|srTr22+kss>>7q;
// t3 Ð s235� � �s242` s280� � �s287
t3=psrTr29+kss<<3|srTr30+kss>>5q�s rTr35+kss;
// 8 � bit keystream calculation
z=t1�t2�t3 ;
// t1 Ð t1 ` (s83� � �s90 & s84� � �s91) ` s163� � �s170
t1� =psrTr10+kss<<3|srTr11+kss>>5q&psrTr10+kss<<4|srTr11+kss>>4q;
t1� =psrTr20+kss<<3|srTr21+kss>>5q;
// t2 Ð t2 ` (s167� � �s174 & s168� � �s175) ` s256� � �s263.
t2� =psrTr20+kss<<7|srTr21+kss>>1q&srTr21+kss�s rTr32+kss;
// t3 Ð t3 ` (s278� � �s285 & s279� � �s286) ` s61� � �s68
t3� =psrTr34+kss<<6|srTr35+kss>>2q&psrTr34+kss<<7|srTr35+kss>>1q;
t3� =psrTr7+kss<<5|srTr8+kss>>3q;
// Step 2: Shift of 1 byte to right of the internal state (update k)
k+=35;
k=Trks;
// Step 3: Update of 3 bytes of the internal state
// s0 � � �s7 Ð t3
srTr0+kss=t3;
// s93 � � �s100Ð t1
srTr11+kss=psrTr11+kss&0xf8q|pt1>>5q;
srTr12+kss=pt1<<3q|psrTr12+kss&0x07q;
// s177 � � �s184Ð t2
srTr22+kss=psrTr22+kss&0x80q|pt2>>1q;
srTr23+kss=pt2<<7q|psrTr23+kss&0x7fq;
return z ;

u

Then, the function Init loads the key and the initialization vector (iv) into the
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initial state and allows to perform the 144 warm-up rounds (4�288/8) needed
before generating keystream bytes. In case of IRC, it is necessary to compute one
additional NextByte after loading the inputs and then to load one more time the
inputs on two bytes without modifying the others.

void Init puint8_t s r36s, const uint8_t key r10s, const uint8_t iv r10sqt
uint8_t i ;
forpi =0; i <36;i ++qt

sr i s=0x0;u
sr35s=0x07;
// Insert the key at position 0
forpi =0; i <10;i ++qt

sr i s=keyri s;u
// Insert the iv at position 93
sr11s=iv r0s>>5;
forpi =0; i <9; i ++qt

sr i +12s=piv r i s<<3q|piv r i +1s>>5q;u
sr21s=iv r9s<<3;

// 144 warm � up rounds.
forpi =0; i <144;i++qt

NextBytepsq;u
u

C TRIVIUM 32-bit implementation

In this section, we provide the 32-bit software implementation of TRIVIUM that
we used in this paper. First, we introduce the 32-bit keystream generation from
the 9 words of the internal state by the function NextWord:

static const uint8_t T r18s = t 0, 1, 2, 3, 4, 5, 6, 7, 8,
0, 1, 2, 3, 4, 5, 6, 7, 8u;
uint8_t k =0;

uint32_t NextWord puint32_t S r9sqt
uint8_t i ;
uint32_t t1 ,t2,t3,z;
// Step 1: Update of the temporary registers and the output
// t1 Ð s34� � �s65` s61� � �s92
t1=pSrTr1+kss<<2|SrTr2+kss>>30q� pSrTr1+kss<<28|SrTr2+kss>>4q;
// t2 Ð s130� � �s161` s145� � �s176
t2=pSrTr4+kss<<2|SrTr5+kss>>30q� pSrTr4+kss<<17|SrTr5+kss>>15q;
// t3 Ð s211� � �s242` s256� � �s287
t3=pSrTr6+kss<<19|SrTr7+kss>>13q�S rTr8+kss;
// 32 � bit keystream calculation
z=t1�t2�t3 ;
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// t1 Ð t1 ` (s59� � �s90&s60� � �s91) ` s139� � �s170
t1� =pSrTr1+kss<<27|SrTr2+kss>>5q&pSrTr1+kss<<28|SrTr2+kss>>4q;
t1� =pSrTr4+kss<<11|SrTr5+kss>>21q;
// t2 Ð t2 ` (s143� � �s174&s144� � �s175) ` s232� � �s263
t2� =pSrTr4+kss<<15|SrTr5+kss>>17q&pSrTr4+kss<<16|SrTr5+kss>>16q;
t2� =pSrTr7+kss<<8|SrTr8+kss>>24q;
// t3 Ð t3 ` (s254� � �s285&s255� � �s286) ` s37� � �s68
t3� =pSrTr7+kss<<30|SrTr8+kss>>2q&pSrTr7+kss<<31|SrTr8+kss>>1q;
t3� =pSrTr1+kss<<5|SrTr2+kss>>27q;
// Step 2: Shift of 1 word to right of the internal state (update k)
k+=8;
k=Trks;
// Step 3: Update of 3 words of the internal state
// s0 � � �s31Ð t3
SrTr0+kss=t3;
// s93 � � �s124Ð t1.
SrTr2+kss=pSrTr2+kss&0xf f f f f f f8q|pt1>>29q;
SrTr3+kss=pSrTr3+kss&0x00000007q|pt1<<3q;
// s177 � � �s208Ð t2
SrTr5+kss=pSrTr5+kss&0xf f f f8000q|pt2>>17q;
SrTr6+kss=pSrTr6+kss&0x00007f f fq|pt2<<15q;
return z ;

u

Then, the function Init loads the key and the iv into the initial state and allows to
perform the 36 warm-up rounds (4�288/32) needed before generating keystream
words. Note that the key and the iv must be completed by 16 zeros.

void Init puint32_t S r9s, const uint32_t key r3s,const uint32_t iv r3sqt
uint8_t i ;
forpi =0; i <9; i ++qt

Sri s=0x0;u
Sr8s=0x07;
// Insert the key at position 0
forpi =0; i <3; i ++qt

Sri s=keyri s;u
// Insert the iv at position 93
Sr2s=iv r0s>>29;
forpi =0; i <2; i ++qt

Sri +3s=piv r i s<<3|iv r i +1s>>29q;u
Sr5s=iv r2s<<3;

// 36 warm � up rounds.
forpi =0; i <36;i ++qt

NextWord psq;u
u
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