F. A. Podosek and P. Cassen, Theoretical, observational, and isotopic estimates of the lifetime of the solar nebula, Meteoritics, vol.349, issue.Suppl., pp.6-25, 1994.
DOI : 10.1038/349051a0

N. Dauphas and A. Pourmand, Hf???W???Th evidence for rapid growth of Mars and its status as a planetary embryo, Nature, vol.5, issue.7348, pp.489-492, 2011.
DOI : 10.1029/2004GC000721

A. R. Sarafian, S. G. Nielsen, H. R. Marschall, F. M. Mccubbin, and B. D. Monteleone, Early accretion of water in the inner solar system from a carbonaceous chondrite-like source, Science, vol.58, issue.11, pp.623-626, 2014.
DOI : 10.1016/S0012-8252(02)00064-8

B. Marty, The origins and concentrations of water, carbon, nitrogen and noble gases on Earth, Earth and Planetary Science Letters, vol.313, issue.314, pp.313-314, 2012.
DOI : 10.1016/j.epsl.2011.10.040

URL : https://hal.archives-ouvertes.fr/hal-00995304

A. N. Halliday, The origins of volatiles in the terrestrial planets, Geochimica et Cosmochimica Acta, vol.105, pp.146-171, 2013.
DOI : 10.1016/j.gca.2012.11.015

A. Férot and N. Bolfan-casanova, Water storage capacity in olivine and pyroxene to 14 GPa: Implications for the water content of the Earth's upper mantle and nature of seismic discontinuities, Earth Planet. Sci. Lett, pp.349-350, 2012.

G. J. Taylor, The bulk composition of Mars, Chemie der Erde - Geochemistry, vol.73, issue.4, pp.401-420, 2013.
DOI : 10.1016/j.chemer.2013.09.006

T. Okuchi, Hydrogen Partitioning into Molten Iron at High Pressure: Implications for Earth's Core, Science, vol.90, issue.5344, pp.1781-1784, 1997.
DOI : 10.1126/science.214.4521.611

. Clesi, Iron-water reaction under high pressure and its implication in the evolution of the Earth, Sci. Adv. J. Geophys. Res. Solid Earth Planets, vol.4, issue.91, pp.9222-9230, 1986.

R. Iizuka-oku, T. Yagi, H. Gotou, T. Okuchi, T. Hattori et al., Hydrogenation of iron in the early stage of Earth???s evolution, Nature Communications, vol.8, p.14096, 2017.
DOI : 10.1063/1.371596

D. C. Rubie, S. A. Jacobson, A. Morbidelli, D. P. O-'brien, E. D. Young et al., Accretion and differentiation of the terrestrial planets with implications for the compositions of early-formed Solar System bodies and accretion of water, Icarus, vol.248, pp.89-108, 2015.
DOI : 10.1016/j.icarus.2014.10.015

J. Wade and B. J. Wood, Core formation and the oxidation state of the Earth, Earth and Planetary Science Letters, vol.236, issue.1-2, pp.78-95, 2005.
DOI : 10.1016/j.epsl.2005.05.017

M. A. Bouhifd, V. Clesi, A. Boujibar, N. Bolfan-casanova, C. Cartier et al., Silicate melts during Earth's core formation, Chemical Geology, vol.461, pp.128-139, 2017.
DOI : 10.1016/j.chemgeo.2016.12.035

T. Kleine, M. Touboul, B. Bourdon, F. Nimmo, K. Mezger et al., Hf???W chronology of the accretion and early evolution of asteroids and terrestrial planets, Geochimica et Cosmochimica Acta, vol.73, issue.17, pp.5150-5188, 2009.
DOI : 10.1016/j.gca.2008.11.047

A. Lob, D. Senk, and B. Hallstedt, Determination of Hydrogen Solubility in Fe-Mn-C Melts, steel research international, vol.110, issue.21, pp.108-113, 2011.
DOI : 10.1007/BF02667311

V. Clesi, M. A. Bouhifd, N. Bolfan-casanova, G. Manthilake, A. Fabbrizio et al., Effect of H 2 O on metal???silicate partitioning of Ni, Co, V, Cr, Mn and Fe: Implications for the oxidation state of the Earth and Mars, Geochimica et Cosmochimica Acta, vol.192, pp.97-121, 2016.
DOI : 10.1016/j.gca.2016.07.029

URL : https://hal.archives-ouvertes.fr/hal-01637102

W. Beck, J. O. Bockris, M. A. Genshaw, and P. K. Subramanyan, Diffusivity and solubility of hydrogen as a function of composition in Fe-Ni alloys, Metallurgical Transactions, vol.15, issue.3, pp.883-888, 1971.
DOI : 10.1098/rspa.1966.0046

P. J. Depuydt and N. A. Parlee, The diffusion of hydrogen in liquid iron alloys, Metallurgical and Materials Transactions B, vol.2, issue.no. 1, pp.529-536, 1972.
DOI : 10.1007/BF02663361

A. C. Withers, H. Bureau, C. Raepsaet, and M. M. Hirschmann, Calibration of infrared spectroscopy by elastic recoil detection analysis of H in synthetic olivine, Chemical Geology, vol.334, pp.92-98, 2012.
DOI : 10.1016/j.chemgeo.2012.10.002

URL : https://hal.archives-ouvertes.fr/hal-00800687

H. Bureau, C. Raepsaet, H. Khodja, A. Carraro, and C. , Aubaud, Determination of hydrogen content in geological samples using elastic recoil detection analysis (ERDA)

D. Novella, D. J. Frost, E. H. Hauri, H. Bureau, C. Raepsaet et al., The distribution of H2O between silicate melt and nominally anhydrous peridotite and the onset of hydrous melting in the deep upper mantle, Earth and Planetary Science Letters, vol.400, pp.1-13, 2014.
DOI : 10.1016/j.epsl.2014.05.006

M. M. Hirschmann, A. C. Withers, P. Ardia, and N. T. Foley, Solubility of molecular hydrogen in silicate melts and consequences for volatile evolution of terrestrial planets, Earth and Planetary Science Letters, vol.345, issue.348, pp.345-348, 2012.
DOI : 10.1016/j.epsl.2012.06.031

F. Gaillard, B. Schmidt, S. Mackwell, and C. Mccammon, Rate of hydrogen???iron redox exchange in silicate melts and glasses, Geochimica et Cosmochimica Acta, vol.67, issue.13, pp.2427-2441, 2003.
DOI : 10.1016/S0016-7037(02)01407-2

C. Defouilloy, R. Duhamel, and F. Robert, Ion Microprobe Determination of Hydrogen Concentration and Isotopic ratio in Extraterrestrial Metallic Alloys, Geostandards and Geoanalytical Research, vol.54, issue.4, pp.417-427, 2013.
DOI : 10.1016/0016-7037(90)90195-Q

A. Shahar, E. A. Schauble, R. Caracas, A. E. Gleason, M. M. Reagan et al., Pressure-dependent isotopic composition of iron alloys, Science, vol.60, issue.6285, pp.580-582, 2016.
DOI : 10.1002/jgrb.50166

M. M. Hirschmann, T. Tenner, C. Aubaud, and A. C. Withers, Dehydration melting of nominally anhydrous mantle: The primacy of partitioning, Physics of the Earth and Planetary Interiors, vol.176, issue.1-2, pp.54-68, 2009.
DOI : 10.1016/j.pepi.2009.04.001

G. Hirth and D. L. Kohlstedt, Water in the oceanic upper mantle: implications for rheology, melt extraction and the evolution of the lithosphere, Earth and Planetary Science Letters, vol.144, issue.1-2, pp.93-108, 1996.
DOI : 10.1016/0012-821X(96)00154-9

Z. D. Sharp, F. M. Mccubbin, and C. K. Shearer, A hydrogen-based oxidation mechanism relevant to planetary formation, Earth and Planetary Science Letters, vol.380, pp.88-97, 2013.
DOI : 10.1016/j.epsl.2013.08.015

M. A. Bouhifd, M. Boyet, C. Cartier, T. Hammouda, N. Bolfan-casanova et al., Superchondritic Sm/Nd ratio of the Earth: Impact of Earth's core formation, Earth and Planetary Science Letters, vol.413, pp.158-166, 2015.
DOI : 10.1016/j.epsl.2014.12.054

A. Fabbrizio, M. A. Bouhifd, D. Andrault, N. Bolfan-casanova, G. Manthilake et al., Argon behavior in basaltic melts in presence of a mixed H 2 O-CO 2 fluid at upper mantle conditions, Chemical Geology, vol.448, pp.100-109, 2017.
DOI : 10.1016/j.chemgeo.2016.11.014

URL : https://hal.archives-ouvertes.fr/hal-01426422

Y. Li, R. Dasgupta, and K. Tsuno, The effects of sulfur, silicon, water, and oxygen fugacity on carbon solubility and partitioning in Fe-rich alloy and silicate melt systems at 3 GPa and 1600?????C: Implications for core???mantle differentiation and degassing of magma oceans and reduced planetary mantles, Earth and Planetary Science Letters, vol.415, pp.54-66, 2015.
DOI : 10.1016/j.epsl.2015.01.017

R. Dasgupta and D. Walker, Carbon solubility in core melts in a shallow magma ocean environment and distribution of carbon between the Earth???s core and the mantle, Geochimica et Cosmochimica Acta, vol.72, issue.18, pp.4627-4641, 2008.
DOI : 10.1016/j.gca.2008.06.023

B. J. Wood, Carbon in the core, Earth and Planetary Science Letters, vol.117, issue.3-4, pp.593-607, 1993.
DOI : 10.1016/0012-821X(93)90105-I

D. Bouchard, C. W. Bale, N. Ti, . Si, S. Mn et al., Simultaneous optimization of thermochemical data for liquid iron alloys containing C, N, Ti, Si, Mn, S, and P, Metallurgical and Materials Transactions B, vol.14, issue.3, pp.467-484, 1995.
DOI : 10.2355/isijinternational1966.22.262

A. Boujibar, D. Andrault, M. A. Bouhifd, N. Bolfan-casanova, J. Devidal et al., Metal???silicate partitioning of sulphur, new experimental and thermodynamic constraints on planetary accretion, Earth and Planetary Science Letters, vol.391, pp.42-54, 2014.
DOI : 10.1016/j.epsl.2014.01.021

URL : https://hal.archives-ouvertes.fr/hal-01134245

N. Bolfan-casanova, G. Montagnac, and B. Reynard, Measurement of water contents in olivine using Raman spectroscopy, American Mineralogist, vol.99, issue.1, pp.149-156, 2014.
DOI : 10.2138/am.2014.4444

URL : https://hal.archives-ouvertes.fr/hal-01134882

E. Médard and T. L. Grove, The effect of H2O on the olivine liquidus of basaltic melts: experiments and thermodynamic models, Contributions to Mineralogy and Petrology, vol.3, issue.1, pp.417-432, 2008.
DOI : 10.1093/petrology/3.3.342

M. Weinstein and J. F. Elliott, Solubility of hydrogen in liquid iron alloys, Trans. Met. Soc. AIME, vol.227, pp.382-393, 1963.

R. G. Blossey and R. D. Pehlke, Solubility of hydrogen in liquid Fe???Co???Ni alloys, Metallurgical and Materials Transactions B, vol.218, issue.11, pp.3157-3161, 1971.
DOI : 10.1007/BF02814968

W. M. Boorstein and R. D. Pehlke, Measurement of hydrogen solubility in liquid iron alloys employing a constant volume technique, Metallurgical Transactions, vol.28, issue.6, pp.399-405, 1974.
DOI : 10.1007/BF02644107

:. V. Author-contributions and M. A. , initiated the project. V.C. and G.M. performed the high-pressure experiments