G. De-marsily, E. Ledoux, A. Barbreau, and J. Margat, Nuclear waste disposal: can the geologist guarantee isolation, Science, vol.197, pp.519-527, 1977.

K. B. Krauskopf, Aqueous geochemistry of radioactive waste disposal, Appl. Geochem, vol.1, pp.15-23, 1986.

M. Sawiki, establishing a community framework for the responsible and safe management of spent fuel and radioactive waste, Off. J. Eur. Union, vol.199, pp.48-56, 2011.

D. Féron, D. Crusset, and J. M. Gras, Corrosion issues in nuclear waste disposal, J. Nucl. Mater, vol.379, pp.16-23, 2008.

A. , Evaluation de la faisabilité du stockage géologique en formation argileuse, 2005.

F. King, Overview of a carbon steel container corrosion model for a deep geological repository in sedimentary rock, 2007.

S. Tricoit, Modélisation et simulation numérique de la propagation de la corrosion par piqÛres du fer en milieu chloruré: contribution à l'évaluation de la durabilité des aciers au carbone en conditions de stockage géologique, 2012.

F. King, Material Performance and Corrosion Waste Materials, Waste containers, pp.421-450, 2012.

J. Gras, Life prediction for HLW containers -issues related to long-term extrapolation of corrosion resistance, C.R. Phys, vol.3, pp.891-902, 2002.

F. Foct and J. M. Gras, Semi-empirical model for carbon steel corrosion in long term geological nuclear waste disposal, International Workshop Prediction of Long Term Corrosion Behaviour in Nuclear Waste Systems, EFC, 2002.

J. Crolet, N. Thevenot, and S. Nesic, Role of conductive corrosion products in the protectiveness of corrosion layers, Corrosion, vol.54, pp.194-202, 1998.

M. B. Kermani and A. , Morshed, Carbon dioxide corrosion in oil and gas production -a compendium, Corrosion, vol.59, pp.659-683, 2003.

A. Romaine, R. Sabot, M. Jeannin, S. Necib, and P. Refait, Electrochemical synthesis and characterization of corrosion products on carbon steel under argillite layers in carbonated media at 80°C, Electrochim. Acta, vol.114, pp.152-158, 2013.

A. Romaine, M. Jeannin, R. Sabot, S. Necib, and P. Refait, Corrosion processes of carbon steel in argillite: galvanic effects associated with the heterogeneity of the corrosion product layer, Electrochim. Acta, vol.182, pp.1019-1028, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01804734

D. Charpentier, K. Devineau, R. Mosser-ruck, M. Cathelineau, and F. Villieras, Bentonite-iron interactions under alkaline condition: an experimental approach, Appl. Clay Sci, vol.32, pp.1-13, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00359881

S. Savoye, L. Legrand, G. Sagon, S. Lecomte, A. Chaussé et al., Experimental investigations on iron corrosion products formed in bicarbonate/ carbonate containing solutions at 90°C, Corros. Sci, vol.43, pp.2049-2064, 2001.

B. Lanson, S. Lantenois, P. A. Van-aken, A. Bauer, and A. Plancon, Experimental investigation of smectite interaction with metal iron at 80°C: structural characterization of newly formed Fe-rich phyllosilicates, Am. Miner, vol.97, pp.864-871, 2012.
URL : https://hal.archives-ouvertes.fr/insu-00723239

M. Perronnet, M. Jullien, F. Villieras, J. Raynal, D. Bonnin et al., Evidence of a critical content in Fe(0) on FoCa7 bentonite reactivity at 80°C, vol.38, pp.187-202, 2008.

I. Pignatelli, F. Bourdelle, D. Bartier, R. Mosser-ruck, L. Truche et al., Iron-clay interactions: detailed study of the mineralogical transformation of claystone with emphasis on the formation of iron-rich T-O phyllosilicates in a step-by-step cooling experiment from 90°C to 40°C, Chem. Geol, vol.387, pp.1-11, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01303810

, Table 10

, Quantification of SEM-EDX analyses for corrosion products at the extremities of samples A241 and A260 (reacted at 85 and 25°C for 104 and 748 days, respectively)

M. L. Schlegel, Corrosion Science, vol.136, pp.70-90, 2018.

P. L. Pape, C. Rivard, M. Pelletier, I. Bihannic, R. Gley et al., Action of a clay suspension on an Fe(0) surface under anoxic conditions: characterization of neoformed minerals at the Fe (0)/solution and Fe(0)/atmosphere interfaces, Appl. Geochem, vol.61, pp.62-71, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01248724

C. Rivard, E. Montarges-pelletier, D. Vantelon, M. Pelletier, C. Karunakaran et al., Combination of multi-scale and multi-edge Xray spectroscopy for investigating the products obtained from the interaction between kaolinite and metallic iron in anoxic conditions at 90°C, Phys. Chem. Miner, vol.40, pp.115-132, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01119588

C. Rivard, M. Pelletier, N. Michau, A. Razafitianamaharavo, I. Bihannic et al., Berthierine-like mineral formation and stability during the interaction of kaolinite with metallic iron at 90°C under anoxic and oxic conditions, Am. Miner, vol.98, pp.163-180, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01119603

S. Kaufhold, A. W. Hassel, D. Sanders, and R. Dohrmann, Corrosion of high-level radioactive waste iron-canisters in contact with bentonite, J. Hazard. Mater, vol.285, pp.464-473, 2015.

L. Carlson, O. Karnland, V. M. Oversby, A. P. Rance, N. R. Smart et al., Experimental studies of the interactions between anaerobically corroding iron and bentonite, Phys. Chem. Earth, vol.32, pp.334-345, 2007.

N. R. Smart, D. J. Blackwood, and L. Werme, Anaerobic corrosion of carbon steel and cast iron in artificial groundwaters: part 1 -electrochemical aspects, Corrosion, vol.58, pp.547-559, 2002.

J. Stoulil, J. Kanok, M. Kouril, H. Parschova, and P. Novak, Influence of temperature on corrosion rate and porosity of corrosion products of carbon steel in anoxic bentonite environment, J. Nucl. Mater, vol.443, pp.20-25, 2013.

M. L. Schlegel, C. Bataillon, K. Benhamida, C. Blanc, D. Menut et al., Metal corrosion and argillite transformation at the water-saturated, high temperature iron-clay interface: a microscopic-scale study, Appl. Geochem, vol.23, pp.2619-2633, 2008.

M. L. Schlegel, C. Bataillon, C. Blanc, D. Prêt, and E. Foy, Anodic activation of iron corrosion in clay media under water-saturated conditions at 90°C: characterization of the corrosion interface, Environ. Sci. Technol, vol.44, pp.1503-1508, 2010.

M. L. Schlegel, C. Bataillon, F. Brucker, C. Blanc, D. Prêt et al., Corrosion of metal iron in contact with anoxic clay at 90°C: characterization of the corrosion products after two years of interaction, Appl. Geochem, vol.51, pp.1-14, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01157703

J. Wilson, G. Cressey, B. Cressey, J. Cuadros, K. V. Ragnarsdottir et al., The effect of iron on montmorillonite stability. (II) experimental investigation, Geochim. Cosmochim. Acta, vol.70, pp.323-336, 2006.

Y. E. Mendili, A. Abdelouas, A. A. Chaou, J. F. Bardeau, and M. L. Schlegel, Carbon steel corrosion in clay-rich environment, Corros. Sci, vol.88, pp.56-65, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01204916

Y. E. Mendili, A. Abdelouas, G. Karakurt, A. A. Chaou, R. Essehli et al., The effect of temperature on carbon steel corrosion under geological conditions, Appl. Geochem, vol.52, pp.76-85, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01905207

F. A. Martin, C. Bataillon, and M. L. Schlegel, Corrosion of iron and low alloyed steel within a water saturated brick of clay under anaerobic deep geological disposal conditions: an integrated experiment, J. Nucl. Mater, vol.379, pp.80-90, 2008.

D. Savage, C. Watson, S. Benbow, and J. Wilson, Modelling iron-bentonite interactions, Appl. Clay Sci, vol.47, pp.91-98, 2010.

F. King, M. Kolar, and P. G. Keech, Simulations of long-term anaerobic corrosion of carbon steel containers in Canadian deep geological repository, Corr. Eng. Sci. Technol, vol.49, pp.455-459, 2014.

J. C. Wilson, S. Benbow, H. Sasamoto, D. Savage, and C. Watson, Thermodynamic and fully-coupled reactive transport models of a steel-bentonite interface, Appl. Geochem, vol.61, pp.10-28, 2015.

O. Bildstein, L. Trotignon, M. Perronnet, and M. Jullien, Modelling iron-clay interactions in deep geological disposal conditions, Phys. Chem. Earth, vol.31, pp.618-625, 2006.

O. Bildstein, J. Lartigue, M. L. Schlegel, C. Bataillon, B. Cochepin et al., Gaining insight into corrosion processes from numerical simulations of an integrated iron-claystone experiment, Geological Society Special Publication, 2015.

V. V. Ngo, A. Clément, N. Michau, and B. Fritz, Kinetic modeling of interactions between iron, clay and water: comparison with data from batch experiments, Appl. Geochem, vol.53, pp.13-26, 2015.

S. Réguer, D. Neff, L. Bellot-gurlet, and P. Dillmann, Deterioration of iron archaeological artefacts: micro-Raman investigation on Cl-containing corrosion products, J. Raman Spectrosc, vol.38, pp.389-397, 2007.

M. Saheb, M. Descostes, D. Neff, H. Matthiesen, A. Michelin et al., Iron corrosion in an anoxic soil: comparison between thermodynamic modelling and ferrous archaeological artefacts characterised along with the local in situ geochemical conditions, Appl. Geochem, vol.25, pp.1937-1948, 2010.

M. Saheb, F. Marsal, H. Matthiesen, D. Neff, P. Dillmann et al., Fluctuation of redox conditions in radioactive waste disposal cell: characterisation of corrosion layers formed on archaeological analogues, Corr. Eng. Sci. Technol, vol.46, pp.199-204, 2011.

M. Saheb, D. Neff, J. Demory, E. Foy, and P. Dillmann, Characterisation of corrosion layers formed on ferrous archaeological artefacts buried in anoxic media, Corr. Eng. Sci. Technol, vol.45, pp.381-387, 2010.

M. Saheb, D. Neff, P. Dillmann, H. Matthiesen, and E. Foy, Long-term corrosion behaviour of low-carbon steel in anoxic environment: characterization of archaeological artefacts, J. Nucl. Mater, vol.379, pp.118-123, 2008.

D. Neff, M. Saheb, J. Monnier, S. Perrin, M. Descostes et al., A review of the archaeological analogue approaches to predict the long-term corrosion behaviour of carbon steel overpack and reinforced concrete structures in the French disposal systems, J. Nucl. Mater, vol.402, pp.196-205, 2010.

D. Neff, E. Vega, P. Dillmann, M. Descostes, L. Bellot-gurlet et al., Contribution of iron archeological artefacts to the estimation of average corrosion rates and the long-term corrosion mechanisms of low-carbon steel buried in soils, Corrosion of Metallic Heritage Artefacts, pp.41-76, 2007.

P. Dillmann, D. Neff, and D. Feron, Archaeological analogues and corrosion prediction: from past to future. A review, Corr. Eng. Sci. Technol, vol.49, pp.567-576, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01157706

M. Saheb, D. Neff, P. Dillmann, M. Descostes, and H. Matthiesen, Long-term anoxic corrosion of iron, Corrosion and Conservation of Cultural Heritage Metallic Artefacts, pp.260-284, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01157701

Y. Leon, M. Saheb, E. Drouet, D. Neff, E. Foy et al., Interfacial layer on archaeological mild steel corroded in carbonated anoxic environments studied with coupled micro and nano probes, Corros. Sci, vol.88, pp.23-35, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01157704

A. Michelin, E. Leroy, D. Neff, J. J. Dynes, P. Dillmann et al., Archeological slag from Glinet: an example of silicate glass altered in an anoxic iron-rich environment, Chem. Geol, vol.413, pp.28-43, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01228638

S. Necib, Y. Linard, D. Crusset, N. Michau, S. Daumas et al., Corrosion at the carbon steel-clay borehole water and gas interfaces at 85°C under anoxic and transient acidic conditions, Corros. Sci, vol.111, pp.242-258, 2016.

M. L. Schlegel, S. Necib, S. Daumas, C. Blanc, E. Foy et al., Microstructural characterization of carbon steel corrosion in clay borehole water,-under anoxic and transient acidic conditions, Corros. Sci, vol.109, pp.126-144, 2016.
URL : https://hal.archives-ouvertes.fr/cea-01334986

J. A. Briones and W. Reichardt, Estimating microbial population counts by most probable number using microsoft excel (R), Microbiol, Methods, vol.35, pp.157-161, 1999.

A. P. Hammersley, FIT2D: a multi-purpose data reduction, analysis and visualization program, J. Appl. Cryst, vol.49, pp.646-652, 2016.

A. Coudrain-ribstein, P. Gouze, and G. De-marsily, Temperature carbon dioxide partial pressure trends in confined aquifers, Chem. Geol, vol.145, pp.73-89, 1998.

H. Venzlaff, D. Enning, J. Srinivasan, K. J. Mayrhofer, A. W. Hassel et al., Accelerated cathodic reaction in microbial corrosion of iron due to direct electron uptake by sulfate-reducing bacteria, Corros. Sci, vol.66, pp.88-96, 2013.

N. Güven and . Smectites, Hydrous Phyllosilicates, pp.497-559, 1988.

S. W. Bailey, Structures and compositions of other trioctahedral 1:1 phyllosilicates, pp.170-188, 1988.

I. Pignatelli, E. Mugnaioli, J. Hybler, R. Mosser-ruck, M. Cathelineau et al., A multi-step technique characterization of cronstedtite synthesized by iron-clay interaction in a step-by-step cooling procedure, Clays Clay Min, vol.61, pp.277-289, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01303025

A. Elmaleh, S. C. Tarantino, M. Zema, B. Devouard, and M. Fialin, The low-temperature magnetic signature of Fe-rich serpentine in CM2 chondrites: comparison with terrestrial cronstedtite and evolution with the degree of alteration, Geochem. Geophys. Geosyst, p.13, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00720273

A. Vinsot, M. Lundy, Y. Linard, S. Wechner, J. Trémosa et al., In situ characterisation of the Callovian-Oxfordian seepage water composition while exposing the rock to oxygen gas, Clays in Natural and Engineered Barriers for Radioactive Waste Confinement, 2015.

S. Grousset, Détermination De La Composition Isotopique Du Soufre Pour l'étude De l'origine, Biotique Ou Abiotique, Des Sulfures De Fer En Corrosion Anoxique, Chimie PArisTech, 2016.

Y. Leon, P. Dillmann, D. Neff, M. L. Schlegel, E. Foy et al., Interfacial layers at a nanometre scale on iron corroded in carbonated anoxic environments, RSC Adv, vol.7, pp.20101-20115, 2017.
URL : https://hal.archives-ouvertes.fr/cea-01510267

A. Michelin, E. Drouet, E. Foy, J. J. Dynes, D. Neff et al., Investigation at the nanometre scale on the corrosion mechanisms of archaeological ferrous artefacts by STXM, J. Anal. At. Spectrom, vol.28, pp.59-66, 2013.

C. Bataillon, F. Bouchon, C. Chainais-hillairet, C. Desgranges, E. Hoarau et al., Corrosion modelling of iron based alloy in nuclear waste repository, Electrochim. Acta, vol.55, pp.4451-4467, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00556950

M. Saheb, D. Neff, C. Bataillon, E. Foy, and P. Dillmann, Copper tracing to determine the micrometric electronic properties of a thick ferrous corrosion layer formed in an anoxic medium, Corros. Sci, vol.53, pp.2201-2207, 2011.

D. W. Shoesmith, Assessing the corrosion performance of high-level nuclear waste containers, Corrosion, vol.62, pp.703-722, 2006.

J. Chen, Z. Qin, and D. W. Shoesmith, Kinetics of corrosion film growth on copper in neutral chloride solutions containing small concentrations of sulfide, J. Electrochem. Soc, vol.157, pp.338-345, 2010.

J. Chen, Z. Qin, and D. W. Shoesmith, Rate controlling reactions for copper corrosion in anaerobic aqueous sulphide solutions, Corr. Eng. Sci. Technol, vol.46, pp.138-141, 2011.

B. W. Sherar, P. G. Keech, and D. W. Shoesmith, Carbon steel corrosion under anaerobic-aerobic cycling conditions in near-neutral pH saline solutions -part 1: long term corrosion behaviour, Corros. Sci, vol.53, pp.3636-3642, 2011.

P. Refait, A. M. Grolleau, M. Jeannin, E. Francois, and R. Sabot, Localized corrosion of carbon steel in marine media: galvanic coupling and heterogeneity of the corrosion product layer, Corros. Sci, vol.111, pp.583-595, 2016.

C. Remazeilles, D. Neff, F. Kergourlay, E. Foy, E. Conforto et al., Mechanisms of long-term anaerobic corrosion of iron archaeological artefacts in seawater, Corros. Sci, vol.51, pp.2932-2941, 2009.

S. Reguer, P. Dillmann, and F. Mirambet, Buried iron archaeological artefacts: corrosion mechanisms related to the presence of Cl-containing phases, Corros. Sci, vol.49, pp.2726-2744, 2007.

S. Reguer, P. Dillmann, F. Mirambet, and L. Bellot-gurlet, Local and structural characterisation of chlorinated phases formed on ferrous archaeological artefacts by (XRD and (XANES, Nucl. Instrum. Methods Phys. Res. B, vol.240, pp.500-504, 2005.

M. L. Schlegel, Corrosion Science, vol.136, pp.70-90, 2018.

C. Remazeilles and P. Refait, Formation, fast oxidation and thermodynamic data of Fe (II) hydroxychlorides, Corros. Sci, vol.50, pp.856-864, 2008.

C. F. Pérez-brokate, D. Di-caprio, D. Féron, J. De-lamare, and A. Chaussé, Three dimensional discrete stochastic model of occluded corrosion cell, Corros. Sci, vol.111, pp.230-241, 2016.

S. Ne?i?, M. Nordsveen, R. Nyborg, and A. Stangeland, A mechanistic model for carbon dioxide corrosion of mild steel in the presence of protective iron carbonate filmspart 2: a numerical experiment, Corrosion, vol.59, pp.489-497, 2003.

S. Nesic, Key issues related to modelling of internal corrosion of oil and gas pipelines -a review, Corros. Sci, vol.49, pp.4308-4338, 2007.

M. B. Nemer, Y. L. Xiong, A. E. Ismail, and J. H. Jang, Solubility of Fe 2 (OH) 3 Cl (pure-iron end-member of hibbingite) in NaCl and Na 2 SO 4 brines, Chem. Geol, vol.280, pp.26-32, 2011.

M. Pourbaix, Applications of electrochemistry in corrosion science and in practice, Corros. Sci, vol.14, pp.25-82, 1974.

I. Azoulay, C. Remazeilles, and P. Refait, Determination of standard Gibbs free energy of formation of chukanovite and Pourbaix diagrams of iron in carbonated media, Corros. Sci, vol.58, pp.229-236, 2012.

P. M. Dove and J. D. Rimstidt, Silica: Physical Behavior, Geochemistry and Materials Application, pp.259-308, 1994.

F. H. Sweeton, R. E. Mesmer, and C. F. Baes, Acidity measurements at elevated temperatures. VII. dissociation of water, J. Solut. Chem, vol.3, pp.191-214, 1974.

J. T. Trevors and C. M. Cotter, Copper toxicity and uptake in microorganisms, J. Ind. Microbiol, vol.6, pp.77-84, 1990.

S. Shakeri-yekta, A. Lindmark, U. Skyllberg, A. Danielsson, and B. H. Svensson, Importance of reduced sulfur for the equilibrium chemistry and kinetics of Fe(II), Co(II) and Ni(II) supplemented to semi-continuous stirred tank biogas reactors fed with stillage, J. Hazard. Mater, vol.269, pp.83-88, 2014.

D. Enning, H. Venzlaff, J. Garrelfs, H. T. Dinh, V. Meyer et al., Marine sulfate-reducing bacteria cause serious corrosion of iron under electroconductive biogenic mineral crust, Environ. Microbiol, vol.14, pp.1772-1787, 2012.

M. L. Schlegel, Corrosion Science, vol.136, pp.70-90, 2018.