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The interplay between interactions and quenched disorder can result in rich dynamical quantum
phenomena far from equilibrium, particularly when many-body localization prevents the system
from full thermalization. With the aim of tackling this interesting regime, here we develop a semi-
analytical flow equation approach to study time evolution of strongly disordered interacting quantum
systems. We apply this technique to a prototype model of interacting spinless fermions in a random
on-site potential in both one and two dimensions. Key results include (i) an explicit construction
of the local integrals of motion that characterize the many-body localized phase in one dimension,
ultimately connecting the microscopic model to phenomenological descriptions, (ii) calculation of
these quantities for the first time in two dimensions, and (iii) an investigation of the real-time
dynamics in the localized phase which reveals the crucial role of l-bit interactions for enhancing
dephasing and relaxation.

PACS numbers: 42.50.Ct,05.70.Ln

Introduction - Quenched random disorder can have
dramatic effects on transport and dynamical properties
of quantum many-body systems, leading to a complete
breakdown of diffusion and to the localized insulating be-
havior of a non-interacting quantum particle in a random
external potential [1]. Theoretical investigations in the
past decade have shown that localization effects can sur-
vive in the presence of many-body interactions and finite
temperature (or finite energy density) in closed isolated
quantum systems [2–10], a surprising result with pro-
found consequences for our basic understanding of quan-
tum statistical mechanics [11–14]. While the interplay of
interaction and disorder on the equilibrium low temper-
ature physics of quantum systems has been thoroughly
studied [15], these recent developments have triggered a
new wave of interest into the problem and cast it into
a completely new light, one where dynamics and out of
equilibrium phenomena play a key role.

Very recently, the first signatures of many-body lo-
calization (MBL) have been observed with a number
of experimental platforms, including ultra-cold atoms in
quasirandom optical lattices [16], ion traps with pro-
grammable random disorder [17] and dipolar systems
made by nuclear spins [18, 19]. The theoretical prop-
erties of MBL have mostly been discussed in the context
of random quantum spin models [20] (or equivalently, in-
teracting random spinless fermions), and mostly in one
dimension. In particular, the dynamics of entanglement
and its structure in highly excited MBL eigenstates has
been largely unveiled [21–23] and a phenomenological de-
scription of fully MBL phases has been proposed [24, 25]
in terms of an extensive set of emergent local integrals
of motion which are conserved by the unitary dynam-
ics, thus preventing complete thermalization. Such local
degrees of freedom (also called localized bits or l-bits)
are smoothly connected to those of the non-interacting
Anderson insulator through a quasi-local unitary trans-

formation [26–33], thus suggesting an underlying concept
of adiabaticity similar, to a certain extent, to the Landau
Fermi Liquid construction [34]. Further consequences of
this emergent integrability have been discussed, specifi-
cally concerning broken symmetry phases [13], memory of
initial conditions and quantum coherence [35, 36]. More
recently the focus has moved toward understanding the
properties of the transition [37] from MBL into the fully
ergodic regime, the anomalies appearing on both side
of the transition [38–45] or the effect of periodic driv-
ing [46, 47] (see Ref. [48] for a recent topical review).

From the theoretical point of view, the majority of re-
sults in the literature have been obtained with numerical
approaches, in most cases exact diagonalization or matrix
product state simulations. It is therefore quite urgent to
develop alternative methods which can provide analyti-
cal insights on the MBL phenomenon and its properties,
particularly those related to dynamics out of equilibrium.

With this aim, in this work we present a novel approach
for studying time evolution of interacting, strongly dis-
ordered quantum many-body system. An extension of
the established Flow Equation (FE) method traditionally
used for translationally invariant (clean) systems both in
and out of equilibrium [49–51] this approach builds a
series of continuous unitary transformations (CUTs) to
iteratively diagonalise the Hamiltonian of the system in
real-space, for a given realization of disorder. First at-
tempts in this direction have appeared recently both in
the context of non-interacting disordered quantum sys-
tems [52, 53] and for genuine MBL problems, where the
FE approach has been formulated as an exact scheme [54]
and implemented on random quantum spin chains as nu-
merical algorithm to diagonalize the Hamiltonian matrix
in the full Hilbert space [55, 56]. These exact implemen-
tations, although very powerful in principle, remain lim-
ited to rather small system sizes. Here, we instead pro-
ceed differently and introduce a semi-analytical version of
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the FE approach inspired by the large literature on CUTs
for interacting quantum many-body systems [49, 57–60].

As we will show, this method allows us to address both
static and - more importantly - dynamical properties
of large disordered quantum many-body systems in the
MBL phase, a problem so far studied mainly with numer-
ical methods [61–64], and even to discuss MBL physics
in two dimensions, something which is currently out of
reach for most state of the art approaches. A related dis-
crete displacement transform has also been used to study
MBL, but limited to static applications [28, 65].

Disordered Lattice Fermions and the Flow Equation
Approach - In order to describe the method and dis-
cuss our results, we will focus on a lattice model of
disordered, interacting, spinless fermions related via the
Jordan-Wigner transformation to the XXZ quantum spin
chain model in random field which has been extensively
studied in the context of MBL. Its Hamiltonian reads:

H =
∑

i

hic
†
i ci + ∆

∑

i

ni ni+1 + J
∑

i

(c†i ci+1 + hc) (1)

with ni = c†i ci, where the on-site random field is drawn
from a box distribution hi ∈ [−W,W ] and we set J = 1/2
as our unit of energy, to map exactly on the XXZ spin
chain after Jordan-Wigner. Notice that FEs are a rather
general and flexible approach which can be applied to
other quantum disordered problems (see discussion for
future applications). The basic idea of the FE approach
is to iteratively diagonalize the Hamiltonian of the sys-
tem by a CUT U(l) parametrized by a scale l and gen-
erated by an anti-Hermitian operator η(l), such that
U(l) = Tl exp

(∫
η(l)dl

)
. The flow of any operator O(l)

under this transform is given by dO/dl = [η(l), O(l)].
When applied to the Hamiltonian, this is spiritually
similar to a standard renormalization group treatment,
where the ‘fixed point’ in the l → ∞ limit is a diagonal
Hamiltonian with renormalized couplings. The genera-
tor η(l) is itself scale-dependent and changes throughout
the flow. Here we use Wegner’s choice for the genera-
tor and choose it to be the commutator of the (scale-
dependent) diagonal and off-diagonal parts of the Hamil-
tonian, η(l) = [H0(l), V (l)]. This choice guarantees that
the off-diagonal terms vanish in the l → ∞ limit; other
choices of generator are also possible [54]. An exact
parametrization of this flow requires, for a generic in-
teracting quantum many-body problem, either a large
(exponential in size) number of matrix elements [55] or
running couplings [54] and is therefore limited to rather
small systems . The key idea of our approach is to take
advantage of the insights on the MBL phase to param-
eterise this diagonalisation flow in terms of a few rele-
vant operators that most closely describe the fixed point
Hamiltonian. This amounts to making an ansatz for the

running Hamiltonian, which we choose to be:

H(l) =
∑

i

hi(l) : c†i ci : +
∑

ij

∆ij(l) : c†i cic
†
jcj : (2)

+
1

2

∑

ij

Jij(l)(: c
†
i cj : + : c†jci :) ≡ H0(l) + V (l),

and disregard all newly generated terms outside this vari-
ational manifold. While this approximation makes the
decay of the off diagonal terms no longer guaranteed a
priori, we argue that the resulting error can be kept un-
der control, particularly in the localised phase [66]. A
few comments are in order, concerning the above ansatz.
Firstly, with the aim of targeting the MBL phase, we have
chosen the first non-trivial terms responsible for pairwise
interactions among l-bits, while higher order (diagonal
or off-diagonal) terms have been discarded. These can in
principle be accounted for at any order of the ansatz, at
the cost of increasing the number of running couplings
and the complexity of evaluating the flow equations. We
expect this choice to be valid deep with in the MBL
phase, but to break down in the delocalised phase (see
below). Secondly, we have adopted the normal-ordering
notation : Ô : with respect to an initial product state
(see Refs. [49, 66]) in such a way to (i) fix unambigously
the precise form of the flow equations and (ii) enhance
the convergence properties of the truncation scheme [49]
. The flow equations for the running couplings can
be obtained from evaluating dH/dl = [η(l),H(l)], with
η(l) = [H0(l), V (l)], and after a lengthy but otherwise
straightforward calculation are given by [66]:

dhi
dl

= 2
∑

j

J2
ij(hi − hj) (3)

dJij
dl

= −Jij(hi − hj)2 −
∑

k

JikJkj(2hk − hi − hj)+

− 8
∑

k

Jij(∆ik −∆jk)(Cki∆ik − Ckj∆jk)+

− 8Jij∆
2
ij(Cij + Cji) (4)

d∆ij

dl
= 4

∑

k

[
J2
ik(∆ij −∆kj) + J2

jk(∆ij −∆ki)
]
− 8J2

ij∆ij

(5)

where we have defined Cij = 〈ni〉2〈nj〉. In practice, we
numerically solve this flow, starting from the microscopic
initial conditions hi(0) = hi, Jij(0) = Jδi,i+1,∆ij(0) =
∆δi,i+1 up to some large but finite value of l where the
off-diagonal elements have decayed to required accuracy
and we are left with a diagonal Hamiltonian.
Benchmark: Properties of the MBL Phase with FE -

To assess the validity of our ansatz (2) we compute the
spectrum using the FE, which simply amounts to read
off the eigenvalues of the diagonal fixed point Hamilto-
nian H(∞) ≡ ∑i h̃ini +

∑
ij ∆̃ijninj , with h̃i ≡ hi(∞)
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FIG. 1: a) Real-space exponential decay of fixed-point cou-

plings ∆̃ij , describing mutual interactions among l-bits, for
increasing values of disorder (top to bottom) in d = 1. b)
The same quantity for d = 2, plotted to the same scale. c)

Localization length scale extracted from ∆̃ij (see main text)
as a function of disorder from large to small. System size is
L = 100 for d = 1 and L = 12× 12 for d = 2, and the number
of disorder realizations for each is NS = 100.

and ∆̃ij ≡ ∆ij(∞) and compare them with exact diag-
onalisation results for a chain of length L = 12. Such
analysis [66] confirms that the agreement is excellent in
the strongly localized phase down to disorder W ∼ 4 and
deteriorates upon entering the delocalized phase. As al-
ready mentioned, a natural outcome of our approach is
the explicit construction of an effective Hamiltonian for
the l-bits of the system. It is therefore interesting to dis-
cuss the structure of these degrees of freedom and their
mutual interaction. In Figure 1a) we plot ∆̃ij = ∆̃(|i−j|)
vs the length |i − j| for different disorder strengths. In
all cases we find that the couplings ∆̃ij decay exponen-
tially with distance, however the decay is much slower
in the small-disorder regime. We can extract a localisa-
tion length ξ by fitting these with a decay of the form
∆̃ij ∝ exp (−|i− j|/ξ). Plotting this localization length
against disorder strength, we see that it increases with
decreasing disorder, however as in Ref. [65] there is no
sign of a delocalisation transition (known to occur around
Wc ≈ 3.5 [67]) in this averaged value of ∆̃ij . It is likely
that the higher-order terms not included in our ansatz (2)
become relevant near the transition and would need to be
included to capture it. We have also computed [66] the

full probability distributions of the ∆̃ij and find approx-
imate power-law decay at all disorder strengths, consis-
tent with both Refs. [55, 65] in the regime of disorder
and lengthscale where our method is accurate.
Localization in Two Dimensions - A major advantage

of our truncated FE approach is that it can be easily
extended to address the fate of MBL beyond one dimen-
sion, an issue which has so far remained largely unex-
plored [68, 69] despite its experimental relevance [70].
Within our implementation, information about lattice ge-
ometry and dimensionality enters only in the initial con-
dition, while the flow of the running couplings remains
unchanged and is still given by Eqs. (3−5). Therefore
the previous analysis can be straightforwardly extended
to two dimensions by making the appropriate modifica-
tions to the initial Hamiltonian. We measure the dis-
tance on the d = 2 lattice by the Manhattan distance,
i.e. rij = |xi − xj | + |yi − yj | where (xi, yi) are lat-
tice co-ordinates. The fixed-point couplings are shown
in Fig. 1b): the system is significantly less localized
than in d = 1. The localization length extracted from
the lowest disorder strength is larger than our system
size, possibly indicating that the system is delocalized at
small disorder, with a clear shift towards fast exponen-
tial localization of the d = 2 “l-bits” at strong disorder.
Whether there is a true phase transition between these
is left for future work, and the same caveats of our trun-
cated Hamiltonian in d = 1 apply to the d = 2 system.
Time Evolution in the MBL Phase with Flow Equa-

tions - While the FE method provides a natural frame-
work to understand the local integrals of motion picture
and for computing static properties of the MBL phase,
another significant advantage is its potential to investi-
gate time evolution and dynamics of strongly disordered
interacting quantum systems. The key observation is
that time evolution becomes trivial in the basis where
Hamiltonian is diagonal. The challenging part is to keep
track of the change of basis, which is what the FE nat-
urally does. More formally, any given time dependent
average of the form O(t) = 〈Ψ0|eiHtOe−iHt|Ψ0〉 can be
also written as:

O(t) = 〈Ψ0|U†(l)eiH(l)tO(l)e−iH(l)tU(l)|Ψ0〉, (6)

an expression which is particularly useful for l = ∞,
where it amounts to flowing the observable under U(l),
time evolving it with the diagonal H(∞), and flowing it
back to the original basis before taking the expectation
value [50, 51]. Such a backward transformation needs to
be done for each timestep dt = Tmax/N during the evolu-
tion up to time Tmax, resulting in the solution of a large
number of differential equations, O(N × L2) for a sys-
tem of size L, which represents the main computational
challenge behind this approach.

As a concrete and non-trivial example, we study the
dynamics of the model in Eq. (1) for a chain of length L =
64 in d = 1, starting from a product state with a charge
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density wave (CDW) pattern, i.e. |Ψ0〉 = |..010101...〉.
Following the experimental realization of MBL with cold-
atoms in quasi-random disorder [16] this kind of protocol
has attracted considerable attention [71, 72]. We moni-
tor the dynamics of the system by tracking the density in
the middle of the chain. To do so, it is necessary to com-
pute the flow of number operator ni under U(l), which
is given as usual by dni

dl = [η(l), ni] with the same gener-
ator η(l) = [H0(l), V (l)] used to diagonalize the Hamil-
tonian in Eq. (1). As with the Hamiltonian, the oper-
ator flow is not closed but rather generates successively
higher order terms describing an effective operator dress-
ing by the many-body processes. We parametrize this
flow by means of an ansatz including a single-particle
hole excitation, which would be exact in the case of a
non-interacting system [52] and which we expect to work
well in the localised phase,

ni(l) =
∑

j

αij(l) : c†jcj : +
∑

jk

βjk(l) : c†jck :, (7)

A simple calculation for the flow of αij , βjk gives:

dαij
dl

= −2
∑

i

Jij(hi − hj)βij , (8)

dβjk
dl

= −Jjk(hk − hj)(αik − αij)

+
∑

n

[Jnj(hj − hn)βnk + Jnk(hn − hk)βnj ] , (9)

which has to be solved with the initial conditions αij(0) =
δij and all βjk(0) = 0. We then have to time-evolve the
density operator in Eq. (7) with respect to the diago-
nal Hamiltonian H(∞) =

∑
i h̃ini +

∑
ij ∆̃ijninj . Al-

though diagonal, time evolution starting from a generic
state (linear combination of many l-bit configurations)
remains non-trivial to compute and essentially analagous
to a classical statistical mechanical problem. We there-
fore resort to a decoupling of the equations of motion
which is able to capture dephasing between different l-
bits. A simple calculation gives the exact dynamics for
the density ni:

i
dni
dt

=
∑

jk

βjk(h̃k − h̃j) : c†jck :

+ 2
∑

kjm

βjk(∆̃km − ∆̃jm) : c†jckc
†
mcm : . (10)

which can be decoupled using : c†jckc
†
mcm :≈: c†jck :

〈c†mcm〉 to obtain a closed solution of the form:

ni(l =∞, t) =
∑

j

α̃ijnj +
∑

jk

eiφjktβ̃jkc
†
jck, (11)

φjk = (h̃k − h̃j) + 2
∑

m

(∆̃km − ∆̃jm)〈nm〉. (12)

d = 2

t

W = 5

W = 8

W = 12

W = 2

� = 1.0

� = 0.5

� = 0.2

� = 0.0

� = 1.0

W = 5

hn
L
/
2
(t
)i

hn
L
/
2
(t
)i

FIG. 2: Real-time evolution of the disorder-averaged density
of fermions in the middle of the chain, starting from a CDW
initial state. Top panel: Effect of disorder on the melting
of CDW correlations, which suppresses the fluctuations but
does not appear to change the relaxation timescale. The fre-
quency of the oscillations at early times are set by the inter-
action strength. Bottom panel: Interaction effects between
l-bits strongly quench their dynamics and induces decoher-
ence. Parameters: L = 64, NS = 500.

From this result we already see the crucial role played
by interactions among l-bits in enhancing dephasing and
relaxation. Finally, to obtain results for the density of
physical fermions we need to transform back into the
original basis, following Eq. (6), which involves solving
the backward flow using time-dependendent initial con-
ditions αij(0, t) = α̃ij and βjk(0, t) = eiφjktβ̃jk. In Fig. 2
we plot the time evolution of the fermion density in the
middle of a chain of length L = 64, after averaging over
NS = 500 disorder samples. We see that upon increas-
ing disorder strength, the initial CDW pattern remains
longer and longer lived, a signature of the enhanced mem-
ory of initial conditions typical of the MBL phase. Fur-
thermore, the effect of interactions is also rather remark-
able: it rapidly quenches the wide coherent oscillations of
the Anderson insulator down to a stationary state with
enhanced imbalance, a direct signature of how the l-bit
interactions are able to induce dephasing.

Conclusions and Perspectives - To conclude, in this
work we have introduced an analytical flow equation ap-
proach to study disordered lattice fermion models and
applied it to the MBL problem. The results we have
presented show that the method is controlled in the in-
teracting localized phase, while to capture the transition
it is necessary to go beyond the ansatz Eq. (2). Never-
theless, the possibility to study the localized phase for
large systems is rather appealing and immediately sug-
gest a number of short and long term perspectives. One
could use the FE approach to study quantum impurity



5

problems in disordered environments, such as the central
spin model [73] or other models of qubits coupled to an
MBL system [35, 74], or to study non-linear transport in
the MBL phase, along the lines of Ref. 75. Another in-
triguing perspective which seems worthy of pursuit is the
application of the concept of CUTs and FEs to more gen-
eral time-dependent problems, such adiabatic evolution
or driven Floquet MBL problems [76], or to open and dis-
sipative MBL problems described by a Lindblad master
equation [77–79] to study more exotic out-of-equilibrium
effects in disordered quantum systems.
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[62] M. Serbyn, Z. Papić, and D. A. Abanin, Phys. Rev. B
90, 174302 (2014).

[63] Y. Bar Lev and D. R. Reichman, Phys. Rev. B 89, 220201
(2014).

[64] R. Mondaini and M. Rigol, Phys. Rev. A 92, 041601
(2015).

[65] L. Rademaker, M. Ortuño, and A. M. Somoza, Annalen
der Physik pp. 1600322–n/a (2017), ISSN 1521-3889,
1600322.

[66] See supplementary material for further technical details.
(????).

[67] D. J. Luitz, N. Laflorencie, and F. Alet, Phys. Rev. B
91, 081103 (2015).

[68] Y. B. Lev and D. R. Reichman, EPL (Europhysics Let-

ters) 113, 46001 (2016), URL http://stacks.iop.org/

0295-5075/113/i=4/a=46001.
[69] A. Chandran, A. Pal, C. R. Laumann, and A. Scardic-

chio, Phys. Rev. B 94, 144203 (2016), URL https:

//link.aps.org/doi/10.1103/PhysRevB.94.144203.
[70] J.-y. Choi, S. Hild, J. Zeiher, P. Schauß, A. Rubio-

Abadal, T. Yefsah, V. Khemani, D. A. Huse, I. Bloch,
and C. Gross, Science 352, 1547 (2016), ISSN 0036-8075,
http://science.sciencemag.org/content/352/6293/1547.full.pdf,
URL http://science.sciencemag.org/content/352/

6293/1547.
[71] D. J. Luitz, N. Laflorencie, and F. Alet, Phys. Rev. B

93, 060201 (2016).
[72] G. Biroli and M. Tarzia, ArXiv e-prints (2017),

1706.02655.
[73] P. Ponte, C. R. Laumann, D. A. Huse, and A. Chandran,

ArXiv e-prints (2017), 1707.00004.
[74] E. P. L. van Nieuwenburg, S. D. Huber, and R. Chitra,

Phys. Rev. B 94, 180202 (2016).
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This Supplementary Material is organized as follows: in section I we define normal ordering of operators, needed to
derive Flow Equations for an interacting problem; in section II we give the explicit expression for the generator of the
flow η(l) starting from the ansatz given in the main text for the running Hamiltonian and discuss some qualitative
features of the resulting flow. Section III is devoted to comparison with Exact Diagonalization results for the same
model studied in the main text. Finally in section IV we present results for the full distribution of l−bit interactions.

I. NORMAL-ORDERING CONVENTION

Follow Ref. 1, we define the contractions of the operators using:

{c†α, cβ} = Gαβ + G̃βα, (1)

with Gαβ = 〈c†αcβ〉, (2)

G̃αβ = 〈cαc†β〉, (3)

Here, we shall make no assumptions as to the state with respect which we normal order and keep all normal-ordering
corrections. Define the normal ordering procedure using the : Ô : notation as:

: c†αcβ : = c†αcβ − 〈c†αcβ〉 (4)

= c†αcβ −Gαβ , (5)

: ninj : =: c†i cic
†
jcj := c†i cic

†
jcj −Gjjni −Giinj − G̃ijc†i cj −Gijcic†j +GiiGjj + G̃ijGij , (6)

where the first identity follows directly from Wick’s theorem and the second is from Ref. 1 but can be derived in the
same way.

To calculate the commutation relations of normal-ordered strings of operators, we use the following theorem1:

: O1(A) :: O2(A′) :=: exp

(∑

kl

Gkl
∂2

∂A′
l∂Ak

)
O1(A)O2(A′) :, (7)

where A and A′ are the set of labelled operators in the expression O1 and O2 which in our case are just strings of
Fermi operators.

We can evaluate this by expanding the exponential - for simple expressions, the expansion can be exact, as all
derivates are zero above some order greater than the number of operators inO1 orO2. For example, for the commutator
of two quadratic terms:

: c†αcβ :: c†γcδ : =:

(
1 +Gαδ

∂2

∂c†α∂cδ
+ G̃βγ

∂2

∂cβ∂c
†
γ

+GαδG̃βγ
∂4

∂c†α∂cδ∂cβ∂c
†
γ

)
c†αcβc

†
γcδ : (8)

=: c†αcβc
†
γcδ : +Gαδ : cβc

†
γ : +G̃βγ : c†αcδ : +GαδG̃βγ . (9)

So the commutation relation is given by:

[: c†αcβ :, : c†γcδ :] = −(Gαδ + G̃αδ) : cβc
†
γ : +(G̃βγ +Gγβ) : c†αcδ : +(GαδG̃βγ −GγβG̃δα) (10)

= δβγ : c†αcδ : −δαδ : c†γcβ : +(GαδG̃βγ −GγβG̃δα), (11)

which is just the regular commutator plus a constant. The higher-order terms can be calculated similarly, albeit with
a much larger number of terms.
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II. FLOW EQUATION DETAILS

A. Calculating the flow

The explicit form of the generator is:

η(l) = ηfree(l) + ηint(l) + ηno(l), (12)

ηfree(l) =
∑

ij

Jij(hi − hj)(: c†i cj : − : c†jci :), (13)

ηint(l) = 2
∑

ijk

Jij(∆ik −∆jk) : c†kck(c†i cj − c†jci) :, (14)

ηno(l) =
∑

ijlm

∆ijJlm

[
2(GjmG̃jl −GljG̃mj) : c†i ci : +(GjmG̃il −GliG̃mj)(: c†i cj : − : c†jci :)

]
, (15)

where the first term is identical to the free system, the second term is due to the interactions and the third is the
explicit normal-ordering correction to the generator. To obtain the flow equations shown in the main text, we commute
this generator with our ansatz for the running form of the Hamiltonian. We specify to a product state, where all
expectation values of the following form vanish:

GαδG̃βγ −GγβG̃δα = (δαδδβγ − δγβδδα)〈nα〉〈nβ〉 = 0, (16)

which simplifies the resulting equations considerably. In particular, the normal-ordering correction to the generator
itself vanishes. The flow equations are then obtained from:

dH
dl

= [η(l),H(l)] = [ηfree(l),H0(l)] + [ηfree(l), V (l)] + [ηint(l),H0(l)] + [ηint(l), V (l)], (17)

which, after using the above product state simplification and discarding all newly-generated terms of quartic order
and higher, leads to the final flow equation shown in the main text. A typical flow is shown in Fig. 1a).

d = 1, L = 100
d = 1, L = 36

d = 2, L = 12⇥ 12

FIG. 1: a) Typical flow of a representative sample of parameters from a chain of length L = 36 with W = 4. The off-diagonal
elements Jij are shown in green and all decay essentially exponentially in the later stages of the flow. The diagonal hi elements
are shown in blue, and the interaction terms ∆ij are shown in red. Note that some of the ∆ij terms which are initially zero
become non-zero at the end of the flow. b) The flow invariant δI as defined in the text, showing how the flow is essentially
closed for large disorder, but for small disorder the truncated terms carry significant weight and the resulting error can be quite
large. This was calculated on chains of length L = 36 and L = 100 in d = 1 and on a grid of size L = 12 × 12 in d = 2, with
both averaged over Ns = 100 disorder realisations.
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B. Flow invariant

To quantify the effect of the truncation which we employ, following Ref. 2 we can make use of the second invariant
of the flow, defined as:

I(l) =
∑

i

h2i (l) +
∑

ij

(
J2
ij(l) + ∆2

ij(l)
)
, (18)

which is a property conserved by the exact unitary flow U(l) and acts as a measure of how much is ‘lost’ by truncating
the Hamiltonian. We define the difference δI between the initial and final Hamiltonians as follows:

δI =
|I(0)− I(∞)|
1
2 (I(0) + I(∞))

. (19)

Plotting against disorder, as shown in Fig. 1b), we see that for large disorder the resulting error remains small and
under control, while in the delocalized phase our error becomes quite large. There is no significant dependence of δI
on system size. The dramatic breakdown of the conservation of the flow invariant for d = 1 in the vicinity of disorder
strength W ∼ 3 is suggestive of a phase transition, however identifying a transition based on the breakdown of our
method is tenuous at best. In d = 2 the error is larger, consistent with our results in the main text showing that the
system is less localized in two dimensions.

III. COMPARISON WITH EXACT DIAGONALIZATION

A. Spectra

From the diagonal Hamiltonian, we can extract the full spectrum and compare with exact diagonalization data
(shown in Fig. 2), obtained with the package QuSpin3. We find that in the delocalized regime (small disorder) the
spectra visibly differ. The agreement improves as we increase the disorder: deep in the MBL phase the two methods
give almost identical results.

FIG. 2: Comparison of spectra for a chain of length L = 12 - ED (red) vs flow equations (blue) at W = 2, 3, 4, 6. As we increase
the disorder and cross the localization transition, the two methods give almost identical results.
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B. Level statistics

In addition, we can also gain some insight from the level statistics. It was previously established that the level-
spacing statistics differ in the localized and delocalized phases. If we consider the ratio of adjacent energy gaps rn
given by:

δn = |En − En+1|, (20)

rn = min(δn, δn+1)/max(δn, δn+1), (21)

it has been shown4 that the average of r tends to ∼ 0.53 in the delocalized phase (corresponding to Wigner-Dyson
level statistics), and ∼ 0.39 in the localized phase (corresponding to Poisson level statistics). In exact diagonalization
(ED), one obtains this quantity by obtaining the spectrum for a fixed filling fraction (here we use 1/2), sorting the
spectrum into ascending order and calculating the above expressions. By extracting this quantity from both the flow
equation framework and from ED, we find that the flow equation result yields Poisson-distributed levels at all disorder
strengths, which confirms that this approach is accurate in the MBL phase but misses the transition in the delocalized
regime. Although not shown here, the same analysis was performed for the d = 2 system of size L = 12 × 12 and
again we find a value of r ∼ 0.39 for all disorder strengths, consistent with Poisson level statistics.

FIG. 3: Comparison of the level statistics from ED (red) and the flow equation method (blue) for a chain of length L = 12
at half-filling. The ED correctly reproduces the change in level statistics from Poisson to Wigner-Dyson, whereas the flow
equation method converges to Poisson statistics at all disorder strengths.
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IV. FULL PROBABILITY DISTRIBUTION OF THE COUPLINGS

In addition to extracting a localization length from the averaged values of the l-bit couplings as in the main text,
we can also take a look at the full probability distribution functions of the l-bit couplings ∆ij to see how they behave.

To do this, we take a chain of length L = 64 and sample 1,000 realisations of the random disorder at a variety
of disorder strengths. We then take the full distribution of the magnitude of the ∆ij couplings at different ranges
r = |i − j| from across all sampled disorder realisations and plot the probability distribution function (PDF). Note
that we have plotted this on a logarithmic scale, rescaled both axes and offset the plots for clarity. We do not consider
ranges longer then r = 24 - the system is localized on length scales much shorter than this and the couplings at this
length scale are already so small as to be below reasonable numerical accuracy.

At all disorder strengths d and ranges r we find approxmate power-law decay, with slight deviations. We see no
signs of the scale-invariant or white-noise-like distributions seen for weak disorder found in Ref. 5, though this is
not surprising as our method is not valid for weak disorder and always converges to a localized phase. At the large
disorder strengths, we do indeed see power-law behaviour consistent with Ref. 5. At small disorder strengths, due
to the limitations of our method the PDF displays the same localized behaviour. Our results differ from the discrete
displacement transform studied in Ref. 6. Although we also see that the tails of the distribution deviate from power-
law at the longest lengthscales and largest disorder we consider, we do not find the same transition to exponential
decay. In the strong disorder limit where our method is most accurate, and at small length scales where we can be
sure we are within numerical accuracy, both Refs. 5,6 and ourselves find power-law decay of the couplings.

r = 1

r = 24

r = 6

r = 8

r = 12

r = 16

log10(�/median(�))

lo
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FIG. 4: Probability distribution functions (PDFs) of the rescaled l-bit couplings for a variety of disorder strengths W and
ranges r = |i− j|. Both axes have been have been normalised and the data vertically offset for clarity.

1 S. Kehrein, The flow equation approach to many-particle systems, vol. 217 (Springer, 2007).
2 C. Monthus, Journal of Physics A: Mathematical and Theoretical 49, 305002 (2016).
3 P. Weinberg and M. Bukov, SciPost Phys. 2, 003 (2017).
4 V. Oganesyan and D. Huse, Phys. Rev. B 75, 155111 (2007).
5 D. Pekker, B. K. Clark, V. Oganesyan, and G. Refael (2016), arXiv:1607.07884.
6 L. Rademaker, M. Ortuño, and A. M. Somoza, Annalen der Physik pp. 1600322–n/a (2017), ISSN 1521-3889, 1600322.


