Skip to Main content Skip to Navigation
Journal articles

Time Evolution of Many-Body Localized Systems with the Flow Equation Approach

Abstract : The interplay between interactions and quenched disorder can result in rich dynamical quantum phenomena far from equilibrium, particularly when many-body localization prevents the system from full thermalization. With the aim of tackling this interesting regime, here we develop a semi-analytical flow equation approach to study time evolution of strongly disordered interacting quantum systems. We apply this technique to a prototype model of interacting spinless fermions in a random on-site potential in both one and two dimensions. Key results include (i) an explicit construction of the local integrals of motion that characterize the many-body localized phase in one dimension, ultimately connecting the microscopic model to phenomenological descriptions, (ii) calculation of these quantities for the first time in two dimensions, and (iii) an investigation of the real-time dynamics in the localized phase which reveals the crucial role of $l$-bit interactions for enhancing dephasing and relaxation
Document type :
Journal articles
Complete list of metadata

Cited literature [53 references]  Display  Hide  Download
Contributor : Emmanuelle De Laborderie Connect in order to contact the contributor
Submitted on : Monday, March 12, 2018 - 2:55:38 PM
Last modification on : Wednesday, August 31, 2022 - 4:46:23 PM
Long-term archiving on: : Wednesday, June 13, 2018 - 2:21:00 PM


Files produced by the author(s)



S. J. Thomson, M. Schiró. Time Evolution of Many-Body Localized Systems with the Flow Equation Approach. Physical Review B: Condensed Matter and Materials Physics (1998-2015), American Physical Society, 2018, 97, pp.060201. ⟨10.1103/PhysRevB.97.060201⟩. ⟨cea-01729268⟩



Record views


Files downloads