A. Konishi, Synthesis and Characterization of Teranthene: A Singlet Biradical Polycyclic Aromatic Hydrocarbon Having Kekule?? Structures, Journal of the American Chemical Society, vol.132, issue.32, pp.11021-11023, 2010.
DOI : 10.1021/ja1049737

Y. Son, M. L. Cohen, and S. G. Louie, Energy Gaps in Graphene Nanoribbons, Physical Review Letters, vol.97, issue.21, p.216803, 2006.
DOI : 10.1103/PhysRevB.72.073404

P. Ruffieux, On-surface synthesis of graphene nanoribbons with zigzag edge topology, Nature, vol.73, issue.7595, pp.489-492, 2016.
DOI : 10.1103/PhysRevB.73.205119

Y. Li, H. Shu, S. Wang, and J. Wang, Electronic and Optical Properties of Graphene Quantum Dots: The Role of Many-Body Effects, The Journal of Physical Chemistry C, vol.119, issue.9, pp.4983-4989, 2015.
DOI : 10.1021/jp506969r

L. Li, Focusing on luminescent graphene quantum dots: current status and future perspectives, Nanoscale, vol.44, issue.10, pp.4015-4039, 2013.
DOI : 10.1088/0022-3727/44/4/045102

M. Bacon, S. J. Bradley, and T. Nann, Graphene Quantum Dots, Particle & Particle Systems Characterization, vol.100, issue.4, pp.415-428, 2014.
DOI : 10.1063/1.3687173

Q. Xu, Single-Particle Spectroscopic Measurements of Fluorescent Graphene Quantum Dots, ACS Nano, vol.7, issue.12, pp.10654-10661, 2013.
DOI : 10.1021/nn4053342

S. Zhao, Fluorescence from graphene nanoribbons of well-defined structure, Carbon, vol.119, pp.235-240, 2017.
DOI : 10.1016/j.carbon.2017.04.043

URL : https://hal.archives-ouvertes.fr/cea-01513488

Y. Tan, Atomically precise edge chlorination of nanographenes and its application in graphene nanoribbons, Nature Communications, vol.23, p.2646, 2013.
DOI : 10.1002/jcc.1058

R. Rieger and K. Müllen, Forever young: polycyclic aromatic hydrocarbons as model cases for structural and optical studies, Journal of Physical Organic Chemistry, vol.48, pp.315-325, 2010.
DOI : 10.1557/mrs2008.138

C. Cocchi, D. Prezzi, A. Ruini, M. J. Caldas, and E. Molinari, Anisotropy and Size Effects on the Optical Spectra of Polycyclic Aromatic Hydrocarbons, The Journal of Physical Chemistry A, vol.118, issue.33, pp.6507-6513, 2014.
DOI : 10.1021/jp503054j

J. K. Sprafke, Belt-Shaped ??-Systems: Relating Geometry to Electronic Structure in a Six-Porphyrin Nanoring, Journal of the American Chemical Society, vol.133, issue.43, pp.17262-17273, 2011.
DOI : 10.1021/ja2045919

M. Koperski, Single photon emitters in exfoliated WSe2 structures, Nature Nanotechnology, vol.10, issue.6, pp.503-506, 2015.
DOI : 10.1088/2053-1583/1/1/011002

URL : http://arxiv.org/pdf/1411.2774

A. Srivastava, Optically active quantum dots in monolayer WSe2, Nature Nanotechnology, vol.4, issue.6, pp.491-496, 2015.
DOI : 10.1038/nprot.2010.192

URL : https://infoscience.epfl.ch/record/207732/files/Nature Nanotech. (2015) Srivastava - Optically active quantum dots in monolayer WSe2.pdf

C. Chakraborty, L. Kinnischtzke, K. M. Goodfellow, R. Beams, and A. N. Vamivakas, Voltage-controlled quantum light from an atomically thin semiconductor, Nature Nanotechnology, vol.4, issue.6, pp.507-511, 2015.
DOI : 10.1103/PhysRevLett.112.223601

Y. He, Single quantum emitters in monolayer semiconductors, Nature Nanotechnology, vol.5, issue.6, pp.497-502, 2015.
DOI : 10.1038/344524a0

URL : http://arxiv.org/pdf/1411.2449

X. Li, Nonmagnetic Quantum Emitters in Boron Nitride with Ultranarrow and Sideband-Free Emission Spectra, ACS Nano, vol.11, issue.7, pp.6652-6660, 2017.
DOI : 10.1021/acsnano.7b00638

L. J. Martínez, Efficient single photon emission from a high-purity hexagonal boron nitride crystal, Physical Review B, vol.8, issue.12, p.121405, 2016.
DOI : 10.1038/nphoton.2009.229

T. T. Tran, K. Bray, M. J. Ford, M. Toth, and I. Aharonovich, Quantum emission from hexagonal boron nitride monolayers, Nature Nanotechnology, vol.77, issue.1, p.37, 2016.
DOI : 10.1103/PhysRevLett.77.3865

M. Lesik, Perfect preferential orientation of nitrogen-vacancy defects in a synthetic diamond sample, Applied Physics Letters, vol.104, issue.11, p.113107, 2014.
DOI : 10.1063/1.4868128

S. A. Empedocles and M. G. Bawendi, Quantum-Confined Stark Effect in Single CdSe Nanocrystallite Quantum Dots, Science, vol.278, issue.5346, pp.2114-2117, 1997.
DOI : 10.1126/science.278.5346.2114

L. Li and X. Yan, Colloidal Graphene Quantum Dots, The Journal of Physical Chemistry Letters, vol.1, issue.17, pp.2572-2576, 2010.
DOI : 10.1021/jz100862f

J. Bernard, L. Fleury, H. Talon, and M. Orrit, Photon bunching in the fluorescence from single molecules: A probe for intersystem crossing, The Journal of Chemical Physics, vol.1986, issue.2, pp.850-859, 1993.
DOI : 10.1016/0009-2614(91)90040-G

URL : https://hal.archives-ouvertes.fr/hal-01549742

S. Schumacher, Photophysics of graphene quantum dots: Insights from electronic structure calculations, Physical Review B, vol.114, issue.8, p.81417, 2011.
DOI : 10.1039/b917724h

M. Wehmeier, M. Wagner, and K. Müllen, Novel Perylene Chromophores Obtained by a Facile Oxidative Cyclodehydrogenation Route, Chemistry, vol.83, issue.10, pp.2197-2205, 2001.
DOI : 10.1016/S0379-6779(97)80073-2

L. Novotny and B. Hecht, Principles of Nano-Optics, 2012.

S. Reynaud, La fluorescence de r??sonance : Etude par la m??thode de l???atome habill??, Annales de Physique, vol.8, pp.315-370, 1983.
DOI : 10.1051/anphys/198308080315

C. Huang, Y. Wen, and Y. Liu, Measuring the second order correlation function and the coherence time using random phase modulation, Optics Express, vol.24, issue.4, pp.4278-4288, 2016.
DOI : 10.1364/OE.24.004278

E. Wu, Narrow-band single-photon emission in the near infrared for quantum key distribution, Optics Express, vol.14, issue.3, pp.1296-1303, 2006.
DOI : 10.1364/OE.14.001296

URL : https://hal.archives-ouvertes.fr/hal-00014015