F. Piccinno, F. Gottschalk, S. Seeger, and B. Nowack, Industrial production quantities and uses of ten engineered nanomaterials in Europe and the world, Journal of Nanoparticle Research, vol.43, issue.9, p.1109, 2012.
DOI : 10.1021/es803621k

B. Jovanovic, Critical Review of Public Health Regulations of Titanium Dioxide, a Human Food 460

A. Weir, P. K. Westerhoff, L. Fabricius, and N. Von-goetz, Titanium Dioxide Nanoparticles in Food and Personal Care Products, Environmental Science & Technology, vol.46, issue.4, pp.2242-2250, 2012.
DOI : 10.1021/es204168d

L. Windler, Release of Titanium Dioxide from Textiles during Washing, Environmental Science & Technology, vol.46, issue.15, pp.8181-8188, 2012.
DOI : 10.1021/es301633b

A. Mackevica and S. Foss-hansen, Release of nanomaterials from solid nanocomposites and consumer exposure assessment ??? a forward-looking review, Nanotoxicology, vol.2014, issue.6, pp.641-653, 2016.
DOI : 10.1007/s11051-013-2185-1

D. M. Mitrano, S. Motellier, S. Clavaguera, and B. Nowack, Review of nanomaterial aging and transformations through the life cycle of nano-enhanced products, Environment International, vol.77, pp.132-147, 2015.
DOI : 10.1016/j.envint.2015.01.013

URL : https://hal.archives-ouvertes.fr/cea-01344057

T. Y. Sun, N. A. Bornhöft, K. Hungerbülher, and B. Nowack, Dynamic probabilistic modeling of 477 environmental emissions of engineered nanomaterials, Env. Sci Technol, pp.4701-4711, 2016.

B. Kim, M. Murayama, B. P. Colman, and M. F. Hochella, Characterization and environmental 482 implications of nano-and larger TiO2 particles in sewage sludge, and soils amended with sewage 483 sludge, J. Environ. Monit, vol.14, pp.1128-1136, 2012.

F. Gottschalk, T. Sun, and B. Nowack, Environmental concentrations of engineered nanomaterials: Review of modeling and analytical studies, Environmental Pollution, vol.181, pp.287-300, 2013.
DOI : 10.1016/j.envpol.2013.06.003

B. Sharma, A. Sarkar, P. Singh, and R. P. Singh, Agricultural utilization of biosolids: A review on potential effects on soil and plant grown, Waste Management, vol.64, pp.117-132, 2017.
DOI : 10.1016/j.wasman.2017.03.002

M. Zimbone, G. Cacciato, M. Boutinguiza, V. Privitera, and M. G. Grimaldi, photocatalyst for environmental remediation, Beilstein Journal of Nanotechnology, vol.8, pp.196-202, 2017.
DOI : 10.3762/bjnano.8.21

M. Wu, Simultaneous biological-photocatalytic treatment with strain CDS-8 and TiO 2 for chlorothalonil removal from liquid and soil, Journal of Hazardous Materials, vol.320, pp.612-619, 2016.
DOI : 10.1016/j.jhazmat.2016.07.063

G. Sanz-lobón, Efficient electrochemical remediation of microcystin-LR in tap water using 497 designer TiO2@carbon electrodes, Sci. Rep, vol.7, 2017.

L. L. Bergeson, Nanosilver pesticide products: What does the future hold?, Environmental Quality Management, vol.19, issue.4, pp.73-82, 2010.
DOI : 10.1002/tqem.20263

K. Sastry, H. Rashmi, and N. Rao, Nanotechnology patents as R&D indicators for disease 501 management strategies in agriculture, J. Intellect. Porperty Rights, vol.15, pp.197-205, 2010.

L. R. Khot, S. Sankaran, J. M. Maja, R. Ehsani, and E. W. Schuster, Applications of nanomaterials in agricultural production and crop protection: A review, Crop Protection, vol.35, pp.64-70, 2012.
DOI : 10.1016/j.cropro.2012.01.007

V. Ghormade, M. V. Deshpande, and K. M. Paknikar, Perspectives for nano-biotechnology enabled protection and nutrition of plants, Biotechnology Advances, vol.29, issue.6, pp.792-803, 2011.
DOI : 10.1016/j.biotechadv.2011.06.007

A. Gogos, K. Knauer, and T. Bucheli, Nanomaterials in plant protection and fertilization: current 507

R. Nair, Nanoparticulate material delivery to plants, Plant Science, vol.179, issue.3, pp.154-163, 2010.
DOI : 10.1016/j.plantsci.2010.04.012

A. Cox, P. Venkatachalam, S. Sahi, and N. Sharma, Silver and titanium dioxide nanoparticle toxicity in plants: A review of current research, Plant Physiology and Biochemistry, vol.107, pp.147-163, 2016.
DOI : 10.1016/j.plaphy.2016.05.022

C. Mariet, O. Belhadj, S. Leroy, F. Carrot, and N. Metrich, Relevance of NH4F in acid digestion before ICP-MS analysis, Talanta, vol.77, issue.1, pp.445-450, 2008.
DOI : 10.1016/j.talanta.2008.07.007

C. Larue, Fate of pristine TiO2 nanoparticles and aged paint-containing TiO2 nanoparticles in lettuce crop after foliar exposure, Journal of Hazardous Materials, vol.273, pp.17-26, 2014.
DOI : 10.1016/j.jhazmat.2014.03.014

URL : https://hal.archives-ouvertes.fr/in2p3-01071498

L. Daudin, H. Khodja, and J. P. Gallien, Development of 'position-charge-time' tagged spectrometry 519 for ion beam microanalysis, Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. At, vol.520, pp.210-153, 2003.

M. Mayer, SIMNRA, a simulation program for the analysis of NRA, RBS and ERDA, AIP Conference Proceedings, p.522
DOI : 10.1063/1.59188

J. L. Campbell, T. L. Hopman, J. A. Maxwell, and Z. Nejedly, The Guelph PIXE software package III, p.525

D. Vantelon, The LUCIA beamline at SOLEIL, Journal of Synchrotron Radiation, vol.53, issue.2, pp.635-640, 2016.
DOI : 10.3938/jkps.53.1449

URL : https://hal.archives-ouvertes.fr/hal-01685234

V. A. Sole, E. Papillon, M. Cotte, P. Walter, and J. Susini, A multiplatform code for the analysis of energy-dispersive X-ray fluorescence spectra, Spectrochimica Acta Part B: Atomic Spectroscopy, vol.62, issue.1, pp.63-68, 2007.
DOI : 10.1016/j.sab.2006.12.002

C. Larue, Foliar exposure of the crop Lactuca sativa to silver nanoparticles: Evidence for internalization and changes in Ag speciation, Journal of Hazardous Materials, vol.264, pp.98-106, 2014.
DOI : 10.1016/j.jhazmat.2013.10.053

URL : https://hal.archives-ouvertes.fr/hal-00913942

P. Giraudoux, pgirmess: Data Analysis in Ecology, 2017.

R. V. Lenth, Least-Squares Means: The R Package lsmeans, J. Stat. Softw, vol.69, pp.1-33, 2016.

J. Fang, X. Q. Shan, B. Wen, J. M. Lin, and G. Owens, Stability of titania nanoparticles in soil suspensions and transport in saturated homogeneous soil columns, Environmental Pollution, vol.157, issue.4, pp.1101-542, 2009.
DOI : 10.1016/j.envpol.2008.11.006

J. Fang, Transport of copper as affected by titania nanoparticles in soil columns, Environmental Pollution, vol.159, issue.5, p.544
DOI : 10.1016/j.envpol.2011.01.039

. Pollut, Barking Essex, pp.1248-1256, 1987.

V. Pachapur, Behavior and characterization of titanium dioxide and silver nanoparticles in 546 soils, Science of the Total Environment, vol.933, p.943, 2016.

M. Wang, B. Gao, and D. Tang, Review of key factors controlling engineered nanoparticle transport 548 in porous media, Journal of Hazardous Materials, pp.233-246, 2016.

V. Shah, Fate and impact of zero-valent copper nanoparticles on geographically-distinct 550 soils, Science of the Total Environment, vol.661670, 2016.

J. Fang, Co-transport of Pb(2+) and TiO2 nanoparticles in repacked homogeneous soil 552 columns under saturation condition: Effect of ionic strength and fulvic acid, Sci. Total Environ, vol.553, pp.571-471, 2016.

C. Larue, Innovative combination of spectroscopic techniques to reveal nanoparticle fate in a crop plant, Spectrochimica Acta Part B: Atomic Spectroscopy, vol.119, pp.17-24, 2016.
DOI : 10.1016/j.sab.2016.03.005

F. Farges, G. E. Brown, and J. J. Rehr, -edge XANES studies of Ti coordination and disorder in oxide compounds: Comparison between theory and experiment, Physical Review B, vol.60, issue.209, pp.1809-1819, 1997.
DOI : 10.1016/0016-7037(96)00146-9

S. Majumdar, Soil organic matter influences cerium translocation and physiological 560 processes in kidney bean plants exposed to cerium oxide nanoparticles, Sci. Total Environ, vol.570, pp.569-561, 2016.

X. Gao, CuO Nanoparticle Dissolution and Toxicity to Wheat (Triticum aestivum, p.563
DOI : 10.1021/acs.est.7b05816

A. Gogos, Vertical transport and plant uptake of nanoparticles in a soil mesocosm 565 experiment, Journal of Nanobiotechnology, 2016.

W. C. Du, TiO2 and ZnO nanoparticles negatively affect wheat growth and soil enzyme activities in agricultural soil, Journal of Environmental Monitoring, vol.47, issue.89, pp.822-828, 2011.
DOI : 10.1007/BF00279331

C. Larue, Accumulation, translocation and impact of TiO2 nanoparticles in wheat (Triticum 569 aestivum spp.): influence of diameter and crystal phase. Sci Total Env, pp.197-208, 2012.

C. Larue, Comparative Uptake and Impact of TiO(2) Nanoparticles in Wheat and Rapeseed, p.571
URL : https://hal.archives-ouvertes.fr/hal-00786971

R. Raliya, R. Nair, S. Chavalmane, W. Wang, and P. Biswas, Mechanistic evaluation of 573 translocation and physiological impact of titanium dioxide and zinc oxide nanoparticles on the 574 tomato (Solanum lycopersicum L.) plant, Metallomics, pp.1584-1594, 2015.

A. D. Servin, Nanoparticle Transfer from Soil into the Food Chain, Environmental Science & Technology, vol.47, issue.20, pp.11592-577, 2013.
DOI : 10.1021/es403368j

A. D. Servin, Weathering in soil increases nanoparticle CuO bioaccumulation within a 579 terrestrial food chain, Nanotoxicology, pp.98-111, 2017.

W. Zhang, Bioavailability of cerium oxide nanoparticles to Raphanus sativus L. in two soils, Plant Physiology and Biochemistry, vol.110, p.581
DOI : 10.1016/j.plaphy.2015.12.013

C. Layet, Evidence that Soil Properties and Organic Coating Drive the Phytoavailability of 583

S. Moghaddasi, Bioavailability of coated and uncoated ZnO nanoparticles to cucumber in 585 soil with or without organic matter, Ecotoxicology and Environmental Safety, pp.543-551, 2017.

J. Watson, The phytotoxicity of ZnO nanoparticles on wheat varies with soil properties, BioMetals, vol.225, issue.3???4, p.587
DOI : 10.1007/s00425-006-0454-2

L. Zhao, Effect of surface coating and organic matter on the uptake of CeO2 NPs by corn 589 plants grown in soil: Insight into the uptake mechanism, J. Hazard. Mater, pp.225-226, 2012.

C. M. Palmer and M. L. Guerinot, Facing the challenges of Cu, Fe and Zn homeostasis in plants, Nature Chemical Biology, vol.6, issue.5, p.592
DOI : 10.1046/j.1365-313X.2003.01960.x

P. Wang, Fate of ZnO Nanoparticles in Soils and Cowpea (Vigna unguiculata), Environmental Science & Technology, vol.47, issue.23
DOI : 10.1021/es403466p