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Abstract
Waves at a frequency close to the lower hybrid (LH) resonance are widely used
in tokamaks for non-inductive current drive. Modelling of LH waves is usually
carried out by combining a Ray-tracing (RT) code for computing the LH waves
propagation to a solver of the Fokker–Planck (FP) equation which calculates
an electron distribution function self-consistently with the waves absorption.
The DELPHINE code has been developed along this approach with accurate
treatment of the magnetic equilibrium and the fast electrons dynamics in
momentum space. Using this code, the in�uence of the plasma current on the LH
waves propagation and absorption is investigated in detail. High plasma current
is found to broaden the absorbed LH spectrum towards high phase velocities,
thus increasing the current drive ef�ciency of the waves. The shape of the
current density pro�le also has an impact on the propagation of the waves and the
resulting power deposition. In discharges where the current pro�le is dominated
by LH current drive (LHCD), this dependence leads to the auto-regulation of
the LHCD via the current density pro�le. The RT/FP technique reproduces
at least qualitatively some of the experimental trends, though inconsistencies
still remain. Perspectives for improving the relevance of the modelling are
discussed.

(Some �gures in this article are in colour only in the electronic version)

1. Introduction

Waves at a frequency close to the lower hybrid (LH) resonance are widely used in tokamaks
for non-inductive current drive. Using these waves, steady-state plasma discharges could be
sustained for durations well beyond the current diffusion time [1,2]. In the JET tokamak, LH
waves are used to preform the current pro�le in order to trigger internal transport barriers and
also to sustain them during the main heating phase [3, 4]. Regimes with internal transport
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barriers at zero loop voltage have also been obtained in discharges with full LH current drive
(LHCD) [5, 6]. In a next step tokamak, LH waves appear as the only ef�cient method for
driving current far off-axis, providing access to advanced tokamak regimes [7].

Modelling of LH waves has also been extensively carried out for more than twenty years
[8–15]. A presently widely used method is to combine a Ray-tracing (RT) code for computing
the LH waves propagation to a solver of the Fokker–Planck (FP) equation which calculates
an electron distribution function self-consistently with the waves absorption. Recent efforts
have been carried out to provide more accurate predictions within the RT and quasilinear
approximations. For the RT codes, this leads to take into account accurately the plasma
geometry, i.e. using two-dimensional (2D) Grad–Shafranov magnetic equilibrium and also
including the effect of the toroidal magnetic �eld ripple because of the discrete number of
toroidal magnetic �eld coils [15]. For FP codes, this means describing the electron distribution
function in a 2D momentum space (in both parallel and perpendicular directions to the magnetic
�eld), including the effect of magnetic trapping, with fully relativistic equations. These efforts
lead to the code named DELPHINE, which is presented here.

As an example of the application of the DELPHINE code, the role of plasma current
density pro�le on LH waves propagation and absorption is investigated in detail. This
parameter is indeed critical for LH waves dynamics. First, it has an in�uence on the
propagation, since the dispersion relation involves the local magnetic �eld value. Using a
numerical mapping of the electrostatic cold plasma dispersion relation, it has been shown
that high plasma current and high magnetic shear tend to increase the rate of the toroidal
n� -upshift [16], n� being the refractive index of the LH wave vector along the magnetic �eld.
These effects are still present in the full electromagnetic dispersion relation including hot
plasma effects that are considered in DELPHINE. Moreover, the plasma current also plays
a crucial role in the de�nition of the parallel refractive index domain in which the waves
can propagate, in particular its low boundary, and so determines the maximum velocity of
resonant electrons. This has a direct impact on the current drive ef�ciency of the waves,
which increases with this upper resonant velocity according to the well-known Fisch–Boozer
current drive theory [17]. Experimental observations of the effect of the total plasma current
on LH waves power deposition and current drive ef�ciency have been reported in [15,18–
20]. The LH power deposition pro�le, measured by fast electron bremsstrahlung (FEB)
tomography [21], becomes broader at higher current, an effect which has also been observed
in JET [22] and FTU [23]. Moreover the current drive ef�ciency, determined at zero loop
voltage, is found to increase as a function of the plasma current [18–20]. In this work, we
interprete these phenomena using the RT/FP code DELPHINE. The underlying physics of this
tool is described in section2. In section3, the in�uence of the plasma current on the current
drive ef�ciency is investigated, keeping the shape of the equilibrium current density pro�le
constant. The behaviour of the rays is investigated in detail, in order to bring to light some
of the fundamental mechanisms of propagation as modelled by RT. The simulation results
are then discussed and compared with the experiments reported in [18]. In addition, RT/FP
modelling also predicts a strong dependence of LH waves propagation and absorption on
the shape of the current density pro�le, as reported in [16]. This dependence is described
in section4. It has important consequences for the predictive modelling of scenarios with
dominant LHCD, which are discussed in section5: it introduces a feedback loop between the
LH waves driven current and the plasma current density, which complicates the modelling
of such discharges. Finally, in section6, the predictions of RT/FP modelling about this
dependence on plasma current density is compared with experimental data. This leads to some
considerations on the present capability of RT/FP codes to model the LH waves propagation and
absorption.
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2. Presentation of the code

The code DELPHINE includes an RT module, which calculates the LH waves propagation
and the absorption along the rays for a given electron distribution function. In order to take
quasilinear effects into account, the RT part is coupled to an FP solver, which calculates
the deformation of the distribution function in momentum space due to a given quasilinear
diffusion coef�cient (calculated by the module which computes the absorption along the rays).
Following the usual method, the absorption and FP modules are iterated successively until they
have converged towards consistent power deposition and electron distribution function.

The main features of the RT are the following: the waves dispersion relation equation is
solved in the LH frequency approximation, including thermal corrections to the cold plasma
dielectric tensor with the assumption of strongly magnetized electrons and weakly magnetized
ions [9]: i.e.

D( �r, �k, �) = P6n6
� + P4n4
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� + P0 = 0 (1)
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where � is the wave frequency multiplied by 2� , c is the light speed in vacuum and
vi =

�
2Ti/m i andve =

�
2Te/m e are the most probable velocity of thermal ions and electrons

(following notations of [9], equal to the thermal velocity multiplied by
�

2) of respective
temperatureTi andTe. � pe is the electron plasma frequency and� pi the one of the ions. In the
expression of� pi, e is the absolute value of the electron charge,� 0 the dielectric permittivity
of vacuum,Zeff the effective charge of the plasma,me the electron mass at rest andmmain the
mass of the main ion species.

The ray equations are solved in the spatial co-ordinates(R, �, Z) , respectively, major
radius, toroidal angle, altitude with respect to the equatorial mid-plane, and their canonical
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variables(kR, n = Rk� , kZ ), where(kR, k� , kZ ) are the components of the wave vector in the
co-ordinate system(R, �, Z) andn is the toroidal mode number:
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A �fth order Runge–Kutta algorithm with adaptative time step is used for calculating the ray
trajectories [24]. The rays are computed for a given number of radial steps or are stopped
before when the quasilinear electron Landau damping (ELD) criterionn� � 6.5/

�
Te is met

with a signi�cant margin, i.e. whenn� � 9/
�

Te.
The equilibrium magnetic �eld and the toroidal �ux co-ordinate are mapped on a poloidal

(R, Z) grid, as input of the code, and numerically interpolated during the RT. This procedure
allows us to use DELPHINE in any tokamak magnetic con�guration and arbitrary shape of
the current pro�le that is consistent with the magnetic equilibrium. In most cases, the magnetic
equilibrium used in DELPHINE is directly given by a 2D solver, which provides calculations
in a realistic geometry. The electron density and temperature pro�les are mapped as a function
of the toroidal �ux co-ordinate and also interpolated numerically during the RT calculations.
DELPHINE is able to take into account the toroidal magnetic �eld ripple in a perturbative
way, using the method described in [15] and transposed in(R, �, Z) geometry. The inputn�

spectrum is usually limited to two Gaussian peaks but can be extended to any number of peaks,
including negativen� contributions (for counter-current drive). It is decomposed into a series
of rays, which are distributed both inn� and initial position, hence covering then� spectrum
and geometrical extent of the antenna, as prescribed in [11].

Once rays are calculated, the absorption module calculates the power damped resonantly
on electrons along each ray according to the equation [10,25]

�P = Š 2� absP �t, (3)

whereP is the power carried by the ray,�t is the propagation time interval between two
calculated points of the ray. The absorption coef�cient� abs is given by
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wherep� is the electron momentum in the direction parallel to the local magnetic �eld,� is
the relativistic factor evaluated at the resonance conditionv� = �/k � andf � is the electron
distribution function averaged over the perpendicular directionf � =

� �
0 2�p � dp� f , with

the electron distribution functionf normalized as
� �

Š� dp�
� �

0 2�p � dp� f = 1. Note that
expression (4) is derived assuming that most of the LH power is absorbed by fast electrons
with v� � v� , i.e. neglecting the dependence of� onv� . This approximation allows us to use
directly f � instead of integrating�f over the perpendicular direction for each evaluation of
� absand reduces signi�cantly the computation time. Therefore� is evaluated in expression (4)

using the relation� � 1/
�

1 Š (1/n 2
� ). For a typical Tore Supra case, this approximation

leads to an underestimation of� abs of only 2%, since the dominant contribution to the
integral

� �
0 2�p � dp� � (�f /�p � )|p� = � m e(�/k � ) occurs indeed for small values ofv� (typically

v� /v e � 1). Moreover, this already small underestimation of� absis more or less compensated
by the omission of the factor [J0(k� p� /m e� ce)]2 under the integral above, which is replaced
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by 1 in deriving expression (4) in thep� � 0 approximation. See the appendix for the detail
of the calculation of� absand the quasilinear diffusion coef�cient.

Following the usual method, the plasma is divided into several radial shells (typically 20).
It is assumed that the electron distribution function depends only on the radius; thereforef is
constant within a radial shell. A local quasilinear diffusion coef�cient is calculated for each
shell. Each time step of each ray which is located in the given plasma shell contributes to the
quasilinear diffusion coef�cient, by adding to it:
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whereV is the volume of the plasma shell,� is the relativistic factor evaluated at the resonance
condition as explained above. Expression (5) is derived so that the power corresponding to
the quasilinear diffusion coef�cient�D QL is equal to the power damped along one step of the
ray, calculated from equations (3) and the full 2D expression of� abs. The evaluation of the
quasilinear diffusion coef�cient therefore takes into account the 2D momentum dependence,
with the relativistic factor� depending onp� and the factor [J0(k� p� /m e� ce)]2.

In order to evaluate expression (5) numerically, for a discrete 2D momentum grid, the
Dirac distribution is replaced by a Gaussian with a �xed width� using the relation

	(x) = lim
� 	 0

1
�

�
�

eŠx2/� 2
. (6)

The spectral width of the resonance� is chosen equal to 0.1. This value results as a trade-off
between (i) providing a suf�ciently smoothDQL with respect to resolution of the momentum
grid used in the FP code and (ii) avoiding spectral overlap between neighbouring rays. The
latter constraint is critical not only for preventing the irrelevant acceleration of non-resonant
electrons but also because it is a key element of the WKB assumptions. Indeed, rays can
be considered independent only if the spectral overlap is negligible, since diffraction effects
are then very small. This well-known limitation of the RT model can only be solved by
considering a beam tracing approach when absorption is strong (single pass) [26, 27] or a
full-wave description in weaker absorption regimes [28, 29]. It has been veri�ed that the
power deposition pro�le does not change signi�cantly when varying� from 0.03 to 0.3. This
means that the code results are stable around the chosen� value, even if criterion (ii) becomes
marginally satis�ed as� increases.

The local FP equation which gives the electron distribution function in momentum space,
neglecting any radial transport of fast electrons, may be expressed as

�f
�t

=
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DQL

�f
�p �

+
	

�f
�t




coll
Š E�

�f
�p �

. (7)

The �rst right hand term represents the quasilinear diffusion of electrons by the LH waves, the
second term models the collisions with the various plasma species (electrons and ions) and the
third term corresponds to the ohmic electric �eld. The FP module used in DELPHINE solves
equation (7) in a 2D momentum space(p, 
 ) , wherep is the modulus of the electron momentum
and
 = p� /p . It uses a symmetrization procedure in momentum space to account for the
effect of particle trapping, using analytical bounce integrals for circular concentric magnetic
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�ux surfaces [30]. The collision operator(�f /�t) coll is fully relativistic and corresponds to
the results obtained in [31]. More details on the FP module can be found in [32]. In relations
(4) and (5), the electron momentum distribution function used by the code corresponds to its
value at the minimum of the magnetic �eld in the plasma equatorial mid-plane. Therefore,
the poloidal dependence off is neglected as well as the bounce-averaging of the quasilinear
diffusion operator. This simpli�ed approach is again consistent with the assumption that
electrons with largep� have a small contribution to the LH wave absorption process.

About eight iterations between the FP module and the absorption calculation are usually
suf�cient in order to converge towards consistent electron distribution function and LH power
absorption in the various plasma shells. At each iteration, the FP solver evolves the distribution
function on a rather long duration, of the order of 50� Š1 with respect to the reference time
scale� Š1, where� is the local electron collision frequency. The inverse time or fully implicit
scheme used in the 2D FP solver allows us indeed to use integration time step much larger
than� Š1. In principle, it is possible to take values larger than 50� Š1 in order to speed up
the convergence and reduce the computer time consumption. If this turns out to be effective
when power absorption takes place predominantly around one radial location, a too large
time step may lead to bistable oscillations of the{ FP + absorption} calculation when power
is spread into two main peaks for example. In that case, the power may be alternatively
absorbed at one of the two peak positions. This is the consequence of the strong dependence
of the power absorption process on the shape of the distribution in momentum space. Such
a limitation can be only avoided by enforcing the consistency betweenf and the quasilinear
diffusion coef�cient on a shorter time scale. The value 50� Š1 is then a trade-off between
numerical stability and rate of convergence, and the wave damping can be correctly described
at all radial positions without spurious behaviours, whatever the shape of the power deposition
pro�le.

Once the iteration between the FP module and the absorption calculation has converged, the
consistency of the result is checked by comparing the total LH power absorbed in each shell—
on the one hand (PABS) by summing the local contributions�P obtained from equation (3)
and on the other hand (PFP) by calculating the power corresponding to the quasilinear diffusion
process:

PFP = Š 2�
� +1

Š1
d


� +�

0

D QL

�f
�p �

p3

� rel
dp, (8)

where � rel is the relativistic factor corresponding to momentump. Some deviation is
unavoidable, mainly because it is numerically dif�cult to make a continuous description like
a distribution function correspond to a discrete Dirac contribution (equation (6) is rigorously
valid only for � 	 0). When the convergence is successful, deviationsPABS Š PFP less than
20% ofPABS are obtained and considered acceptable. However, owing to these deviations, the
total absorbed power in the plasma as calculated by the FP module



shellsPFPV can become

slightly larger than the launched powerPLH, while by construction



shellsPABSV = PLH in
case of full absorption. In order to be consistent with the launched power when comparing
with experiments,PABS is used as the power deposition pro�le, and the LH driven currentj LH

is multiplied by the local value ofPABS/P FP, which conserves the local current drive ef�ciency
calculated by the FP module. It is worth noting that the absorbed LH powerPFP is always
consistent with the power transferred by collisions to the electronsPcoll within the FP solver
which indicates that this one runs consistently on its side without numerical problems. This
condition is well ful�lled provided the value ofDQL never reaches too large values. Indeed, in
that case, the matrix conditioning of the 2D FP solver becomes poor leading often to unphysical
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Figure 1. Pro�les used for the computation of the equilibria: electron densityne (——), electron
temperatureTe (- - - -), plasma current densityj (· · · · · ·).

solutions with too large current drive ef�ciencies. ThoughDQL may be in principle much larger
than unity (in normalized units) from the physics point of view, its value is limited to 10 in
this version of the code. This means that whenDQL(�, p � , p � ) reaches 10, all following ray
steps which would normally contribute to an additional�D QL at the same(�, p � , p � ) have
their � abs set to zero. This approach is relevant since aboveDQL = 10, the plateau formed
in the distribution is already saturated, and the absorption of additional ray steps becomes
negligible. A detailed discussion of the numerical problems for the LHCD may be found
in [33].

The code outputs is the LH power deposition, the driven current and the electron
distribution function (2D in momentum space, plus the radial dimension). The main calculation
subroutines of the code are written in C (RT) or Fortran (FP solver), compiled into MEX-
functions to run in a Matlab® environment. All the other subroutines which do not require
intensive and fast calculations are Matlab® functions, therefore the whole package is running
under Matlab®, taking advantage of its graphic and interactive features [34].

3. Effect of plasma current on absorption and propagation of LH waves

In order to investigate the dependence of the LH power deposition and driven current on the
value of the total plasma current, a series of equilibria in the geometry of the Tore Supra
tokamak have been prepared using the HELENA equilibrium solver [35]. Those equilibria
have the same input pressure and normalized current density pro�les (�gure1) but various
values of the total current (0.4 to 1.4 MA). The propagation and absorption of the LH waves
are computed using the DELPHINE code for each of these equilibria. The launched power
spectrum is centred onn� 0 = 2.0 and discretized into 60 rays. This procedure allows us to
determine the direct in�uence of the plasma current on the LH propagation and absorption,
keeping all other parameters constant. It is usually not possible to do such a single-parameter
scan in experiments, since for instance the temperature is expected to increase with the plasma
current, owing to a better energy con�nement.
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Figure 2. Propagation of a ray in the 1.4 MA con�guration (a) in the(R, Z) co-ordinates, (b) in
the (n� , �) co-ordinates. The red star shows the launching point of the ray and in (a) the blue
circle is the vacuum vessel and a blue ‘+’ shows the magnetic axis. The ray is plotted with red dots
where the absorption of the LH waves is signi�cant, in green dots otherwise. In (b) the red dashed
line is the quasilinear Landau Damping criterionn� � 6.5/

�
Te, the purple dash–dotted line is the

accessibility limitn� acc = (� pe/� ce) +
�

� � .

In the con�guration chosen here, which is typical of Tore Supra low density shots, the LH
power deposition is strongly dependent on the detail of the wave propagation: �rst, the low
density makes the whole plasma accessible to the LH waves. Second, the moderate values
of the electron temperature (Te0 � 3.6 keV) and the fact that theTe pro�le does not feature
strong gradients make the absorption likely at any radial point inside� = 0.6. Therefore,
the localization of the power deposition is not knowna priori and the results of the detail
of the wave propagation as well. Moreover the simulations show that the rays do a few
passes through the plasma before being absorbed. Hence neither the case of single-pass
absorption (rays absorbed rapidly after their launch, which would occur for much larger electron
temperature) nor that of multi-pass absorption (slow variation ofn� per pass, so that the wave
�lls the entire propagation domain in the (n� , � ) space [36]) is achieved. In the former case,
the propagation time is so short that the power deposition is determined almost completely
by the wave characteristics at launch. In the latter, the absorption occurs necessarily at the
intersection between the propagation domain and the Landau damping curve [36]. Conversely,
in the few pass regime, the rays characteristics evolve rapidly and signi�cantly between the
launch and the absorption; therefore the propagation must be followed carefully in order to
predict the location of the power deposition.

During the propagation, the parallel refractive index of some rays may increase owing to
the toroidal geometry. These rays go through the spectral gap and drive a short electron tail
just above the Maxwellian level. The condition for this linear ELD is approximately given by
n� � 6.5/

�
Te [37]. Due to quasilinear effects, rays with lowern� are absorbed in turn by

this suprathermal seed, which result in a fully developed suprathermal plateau in the electron
distribution. Because the fast electron seed is very ef�cient at absorbing lown� rays, the
quasilinear process leads often to narrow power deposition pro�les, which peak at the position
of the seed. As a consequence, the power deposition is mainly determined by the occurrence of
highn� -upshift along some rays. A typical trajectory which provides highn� -upshift is when
the ray propagates towards the edge density cut-off at the top of the chamber and then bounces
back towards the plasma centre [8] (in fact, the sign of then� variation depends on the direction
of the rays rotation in the poloidal plane, e.g. if they turn counter-clockwise,n� -upshift occurs
at the bottom of the chamber). Figure2 shows the typical behaviour of a ray which starts
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Figure 3. Propagation of the rays in the 0.4 MA con�guration (a) in the(R, Z) co-ordinates, (b) in
the(n� , �) co-ordinates. Same drawings and colour code as in �gure2.
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Figure 4. Propagation of the rays in the 0.7 MA con�guration (a) in the(R, Z) co-ordinates, (b) in
the(n� , �) co-ordinates. Same drawings and colour code as in �gure2.

doing a few passes near the equatorial mid-plane, with only a weak variation of itsn� . Then,
after it bounces back from the top of the vaccum vessel, itsn� increases rapidly, and the ray
is fully absorbed. Such rays tend to be damped off-axis, because theirn� increases rapidly
above the local ELD limit as they propagate towards the centre of the plasma (see �gure2).
Conversely, rays with slowern� -upshift will �rst meet the ELD condition near the axis, where
the electron temperature is usually maximum.

The propagation of the rays is clearly affected by the plasma current (see �gures3–5).
The poloidal rotation of the rays increases as a function of the plasma current, as shown by the
projections of the rays in the (R, Z ) space. Indeed, in the electrostatic approximation, the group
velocity of the LH slow waves tends to be parallel to the local magnetic �eld [25]. Therefore the
rays tend to follow the magnetic �eld lines, which have a higher rotational transform at higher
plasma current. AtI p = 0.4 MA (�gure 3), the rays, which are launched around the equatorial
mid-plane from the low �eld side, do only a quarter of a turn in projection in a poloidal cross
section before being absorbed. Since they travel through the top region of the plasma, theirn�

undergoes a fast upshift. AtI p = 0.7 MA (�gure 4), the rays do approximately half a turn in
the poloidal cross section and stay around the equatorial mid-plane. As a consequence, their
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