H. Eyring, The Activated Complex and the Absolute Rate of Chemical Reactions., Chemical Reviews, vol.17, issue.1, pp.65-77, 1935.
DOI : 10.1021/cr60056a006

E. Wigner, The transition state method, Transactions of the Faraday Society, vol.34, pp.29-41, 1938.
DOI : 10.1039/tf9383400029

E. Vanden-eijnden, Transition path theory, Adv. Exp. Med. Biol, vol.2014, issue.797, pp.91-100
DOI : 10.1007/3-540-35273-2_13

M. Kim, R. Jernigan, and G. Chirikjian, Efficient Generation of Feasible Pathways for Protein Conformational Transitions, Biophysical Journal, vol.83, issue.3, pp.1620-1630, 2002.
DOI : 10.1016/S0006-3495(02)73931-3

D. R. Weiss and M. Levitt, Can Morphing Methods Predict Intermediate Structures?, Journal of Molecular Biology, vol.385, issue.2, pp.665-674, 2009.
DOI : 10.1016/j.jmb.2008.10.064

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2691871/pdf

P. Maragakis and M. Karplus, Large Amplitude Conformational Change in Proteins Explored with a Plastic Network Model: Adenylate Kinase, Journal of Molecular Biology, vol.352, issue.4, pp.807-822, 2005.
DOI : 10.1016/j.jmb.2005.07.031

W. Zheng, B. Brooks, and G. Hummer, Protein conformational transitions explored by mixed elastic network models, Proteins: Structure, Function, and Bioinformatics, vol.68, issue.Part 1, pp.43-57, 2007.
DOI : 10.1002/prot.21465

M. Tekpinar and W. Zheng, Predicting order of conformational changes during protein conformational transitions using an interpolated elastic network model, Proteins: Structure, Function, and Bioinformatics, vol.386, pp.2469-2481, 2010.
DOI : 10.1145/1391989.1391995

F. Pinski and A. Stuart, Transition paths in molecules at finite temperature, The Journal of Chemical Physics, vol.63, issue.18, p.184104, 2010.
DOI : 10.1021/jp0751458

URL : https://authors.library.caltech.edu/71834/1/1.3391160.pdf

H. Jonsson, G. Mills, and K. W. Jacobsen, In Classical and Quantum Dynamics in Condensed Phase Simulations, pp.385-404, 1998.

G. Henkelman, B. Uberuaga, and H. Jonsson, A climbing image nudged elastic band method for finding saddle points and minimum energy paths, The Journal of Chemical Physics, vol.13, issue.22, pp.9901-9904, 2000.
DOI : 10.1103/PhysRevLett.85.618

D. Sheppard, R. Terrell, and G. Henkelman, Optimization methods for finding minimum energy paths, The Journal of Chemical Physics, vol.128, issue.13, p.134106, 2008.
DOI : 10.1063/1.2163875

W. ). Ren and W. , Vanden-Eijnden, E. String method for the study of rare events, Phys. Rev. B, vol.66, issue.15, p.52301, 2002.

W. Ren, E. Vanden-eijnden, P. ;. Maragakis, and W. , Transition pathways in complex systems: Application of the finite-temperature string method to the alanine dipeptide, The Journal of Chemical Physics, vol.39, issue.13, p.134109, 2005.
DOI : 10.1063/1.1630572

W. ). Ren and W. , Vanden-Eijnden, E. Simplified and improved string method for computing the minimum energy paths in barrier-crossing events, J. Chem. Phys, vol.126, issue.17, 2007.

E. Vanden-eijnden and M. Venturoli, Revisiting the finite temperature string method for the calculation of reaction tubes and free energies, The Journal of Chemical Physics, vol.39, issue.19, 2009.
DOI : 10.1063/1.2996509

W. Ren, A climbing string method for saddle point search, The Journal of Chemical Physics, vol.138, issue.13, p.134105, 2013.
DOI : 10.1007/b98874

L. Maragliano, B. Roux, and E. Vanden-eijnden, Comparison between Mean Forces and Swarms-of-Trajectories String Methods, Journal of Chemical Theory and Computation, vol.10, issue.2, pp.524-533, 2014.
DOI : 10.1021/ct400606c

L. Maragliano, A. Fischer, E. Vanden-eijnden, and G. Ciccotti, String method in collective variables: Minimum free energy paths and isocommittor surfaces, The Journal of Chemical Physics, vol.54, issue.2, p.24106, 2006.
DOI : 10.1002/cphc.200400669

A. Pan, D. Sezer, and B. Roux, Finding Transition Pathways Using the String Method with Swarms of Trajectories, The Journal of Physical Chemistry B, vol.112, issue.11, pp.3432-3440, 2008.
DOI : 10.1021/jp0777059

Y. Matsunaga, H. Fujisaki, T. Terada, T. Furuta, K. Moritsugu et al., Minimum Free Energy Path of Ligand-Induced Transition in Adenylate Kinase, PLoS Computational Biology, vol.130, issue.6, p.1002555, 2012.
DOI : 10.1371/journal.pcbi.1002555.s012

D. Branduardi and J. Faraldo-gomez, String Method for Calculation of Minimum Free-Energy Paths in Cartesian Space in Freely Tumbling Systems, Journal of Chemical Theory and Computation, vol.9, issue.9, pp.4140-4154
DOI : 10.1021/ct400469w

R. Olender and R. Elber, Calculation of classical trajectories with a very large time step: Formalism and numerical examples, The Journal of Chemical Physics, vol.268, issue.20, pp.9299-9315, 1996.
DOI : 10.1021/j100016a003

P. Eastman, N. Gronbech-jensen, and S. Doniach, Simulation of protein folding by reaction path annealing, The Journal of Chemical Physics, vol.114, issue.8, p.3823, 2001.
DOI : 10.1038/14890

J. Franklin, P. Koehl, S. Doniach, and M. Delarue, MinActionPath: maximum likelihood trajectory for large-scale structural transitions in a coarse-grained locally harmonic energy landscape, Nucleic Acids Research, vol.22, issue.suppl_2, pp.477-482, 2007.
DOI : 10.1093/bioinformatics/btl448

P. Faccioli, M. Sega, F. Pederiva, and H. Orland, Dominant Pathways in Protein Folding, Physical Review Letters, vol.277, issue.10, p.97, 2006.
DOI : 10.1146/annurev.bb.12.060183.001151

URL : http://arxiv.org/pdf/q-bio/0510045

E. Vanden-eijnden and M. Heymann, The geometric minimum action method for computing minimum energy paths, The Journal of Chemical Physics, vol.128, issue.6, 2008.
DOI : 10.1017/CBO9780511812248

X. Zhou, W. ;. Ren, and W. , Adaptive minimum action method for the study of rare events, The Journal of Chemical Physics, vol.128, issue.10, 2008.
DOI : 10.1063/1.472727

S. Chandrasekaran, J. Dhas, N. Dokholyan, and C. Carter-jr, A modified PATH algorithm rapidly generates transition states comparable to those found by other well established algorithms . Struct, 2016.

P. Bolhuis, C. Dellago, P. L. Geissler, and D. Chandler, : Throwing Ropes Over Rough Mountain Passes, in the Dark, Annual Review of Physical Chemistry, vol.53, issue.1, pp.291-318, 2002.
DOI : 10.1146/annurev.physchem.53.082301.113146

J. Chodera, N. Singhal, V. Pande, K. Dill, and W. Swope, Automatic discovery of metastable states for the construction of Markov models of macromolecular conformational dynamics, The Journal of Chemical Physics, vol.126, issue.15
DOI : 10.1063/1.2714539

G. Bowman, K. Beauchamp, G. Boxer, and V. Pande, Progress and challenges in the automated construction of Markov state models for full protein systems, The Journal of Chemical Physics, vol.131, issue.12, 2009.
DOI : 10.1063/1.3192309

V. Pande, K. Beauchamp, and G. Bowman, Everything you wanted to know about Markov State Models but were afraid to ask, Methods, vol.52, issue.1, pp.99-105, 2010.
DOI : 10.1016/j.ymeth.2010.06.002

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2933958/pdf

H. Orland, Generating transition paths by Langevin bridges, The Journal of Chemical Physics, vol.134, issue.17, p.174114, 2011.
DOI : 10.1007/978-3-662-21726-9

URL : http://arxiv.org/pdf/1102.3442

J. Doob, Conditional brownian motion and the boundary limits of harmonic functions, Bulletin de la Société mathématique de France, vol.79, pp.431-458, 1957.
DOI : 10.24033/bsmf.1494

S. Majumdar and H. Orland, Effective Langevin equations for constrained stochastic processes, Journal of Statistical Mechanics: Theory and Experiment, vol.2015, issue.6
DOI : 10.1088/1742-5468/2015/06/P06039

URL : https://hal.archives-ouvertes.fr/hal-01178100

I. Gopich and A. Szabo, Theory of the statistics of kinetic transitions with application to single-molecule enzyme catalysis, The Journal of Chemical Physics, vol.109, issue.15, p.154712, 2006.
DOI : 10.1021/j100356a011

W. Kim and R. Netz, The mean shape of transition and first-passage paths, The Journal of Chemical Physics, vol.4, issue.22, pp.143-224108, 2015.
DOI : 10.1103/PhysRevE.84.051501

E. Carlon, H. Orland, H. Chung, K. Mchale, and J. Louis, Single?molecule fluorescence experiments determine protein folding transition path times, Science, vol.335, issue.4647, pp.981-984, 2012.

K. Lindorff-larsen, S. Piana, R. Dror, and D. Shaw, How Fast-Folding Proteins Fold, Science, vol.9, issue.6, pp.517-520, 2011.
DOI : 10.1038/nsb794

URL : http://science.sciencemag.org/content/sci/334/6055/517.full.pdf