Efficient sampling of knotting-unknotting pathways for semiflexible Gaussian chains

Abstract : We propose a stochastic method to generate exactly the overdamped Langevin dynamics of semi-flexible Gaussian chains, conditioned to evolve between given initial and final conformations in a preassigned time. The initial and final conformations have no restrictions, and hence can be in any knotted state. Our method allows the generation of statistically independent paths in a computationally efficient manner. We show that these conditioned paths can be exactly generated by a set of local stochastic differential equations. The method is used to analyze the transition routes between various knots in crossable filamentous structures, thus mimicking topological reconnections occurring in soft matter systems or those introduced in DNA by topoisomerase enzymes. We find that the average number of crossings, writhe and unknotting number are not necessarily monotonic in time and that more complex topologies than the initial and final ones can be visited along the route.
Type de document :
Article dans une revue
Polymers, MDPI, 2017, 9, pp.196. 〈10.3390/polym9060196〉
Liste complète des métadonnées

Littérature citée [34 références]  Voir  Masquer  Télécharger

Contributeur : Emmanuelle De Laborderie <>
Soumis le : mardi 13 février 2018 - 14:46:55
Dernière modification le : jeudi 15 mars 2018 - 15:04:06
Document(s) archivé(s) le : lundi 7 mai 2018 - 22:54:31


Fichiers produits par l'(les) auteur(s)



Cristian Micheletti, Henri Orland. Efficient sampling of knotting-unknotting pathways for semiflexible Gaussian chains. Polymers, MDPI, 2017, 9, pp.196. 〈10.3390/polym9060196〉. 〈cea-01708269〉



Consultations de la notice


Téléchargements de fichiers