Integrable Combinatorics - Archive ouverte HAL Access content directly
Preprints, Working Papers, ... Year :

Integrable Combinatorics

(1, 2)
1
2

Abstract

We explore various combinatorial problems mostly borrowed from physics, that share the property of being continuously or discretely integrable, a feature that guarantees the existence of conservation laws that often make the problems exactly solvable. We illustrate this with: random surfaces, lattice models, and structure constants in representation theory.
Fichier principal
Vignette du fichier
1711.07865.pdf (270.68 Ko) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

cea-01692519 , version 1 (25-01-2018)

Identifiers

  • HAL Id : cea-01692519 , version 1

Cite

Philippe Di Francesco. Integrable Combinatorics. 2018. ⟨cea-01692519⟩
48 View
173 Download

Share

Gmail Facebook Twitter LinkedIn More