I. Benjamini, Random planar metrics. Unpublished, 2009.
DOI : 10.1142/9789814324359_0140

F. David, Conformal field theories coupled to 2-d gravity in the conformal gauge. Mod, Phys. Lett. A, vol.03, pp.1651-1656, 1988.

[. Francesco, P. Kutasov, and D. , Unitary minimal models coupled to 2D quantum gravity, Nuclear Physics B, vol.342, issue.3, pp.589-624, 1990.
DOI : 10.1016/0550-3213(90)90328-B

K. Distler, J. Distler, and H. Kawai, Conformal field theory and 2D quantum gravity, Nuclear Physics B, vol.321, issue.2, p.509, 1989.
DOI : 10.1016/0550-3213(89)90354-4

D. Douglas, M. R. Shenker, and S. H. , Strings in less than one dimension, Nuclear Physics B, vol.335, issue.3, pp.635-654, 1990.
DOI : 10.1016/0550-3213(90)90522-F

B. Eynard, Recursion Between Mumford Volumes of Moduli Spaces, Annales Henri Poincar??, vol.118, issue.1, 2007.
DOI : 10.2307/2006980

URL : https://hal.archives-ouvertes.fr/hal-00158738

B. Eynard, Intersection numbers of spectral curves, 2011.

B. Eynard, Couting surfaces, 2016.

B. Eynard and N. Orantin, Invariants of algebraic curves and topological expansion. arXiv:math-ph, pp.702045-702049, 2007.
DOI : 10.4310/cntp.2007.v1.n2.a4

URL : https://hal.archives-ouvertes.fr/hal-00130963

J. Harer-zagier-]-harer and D. Zagier, The Euler characteristic of the moduli space of curves, Inventiones Mathematicae, vol.57, issue.33, pp.457-485, 1986.
DOI : 10.1007/BF01390325

[. Knizhnik, V. G. Polyakov, A. M. , and Z. A. , Fractal structure of 2D quantum gravity. function. Mod, p.819, 1988.

M. Kontsevich, Intersection theory on the moduli space of curves and the matrix airy function, Communications in Mathematical Physics, vol.1, issue.2, pp.1-23, 1992.
DOI : 10.4310/SDG.1990.v1.n1.a5

[. Gall and J. , Uniqueness and universality of the Brownian map, The Annals of Probability, vol.41, issue.4, pp.2880-2960, 2013.
DOI : 10.1214/12-AOP792

G. Miermont, The Brownian map is the scaling limit of uniform random plane quadrangulations, Acta Mathematica, vol.210, issue.2, pp.319-401, 2013.
DOI : 10.1007/s11511-013-0096-8

URL : https://hal.archives-ouvertes.fr/hal-00627965

Y. Nakayama, LIOUVILLE FIELD THEORY: A DECADE AFTER THE REVOLUTION, International Journal of Modern Physics A, vol.29, issue.17n18, pp.2771-2930, 2004.
DOI : 10.1016/S0550-3213(01)00573-9

R. C. Penner, The decorated Teichm???ller space of punctured surfaces, Communications in Mathematical Physics, vol.85, issue.2, pp.299-339, 1987.
DOI : 10.1007/BF01223515

A. M. Polyakov, Quantum geometry of bosonic strings, Physics Letters B, vol.103, issue.3, pp.207-210, 1981.
DOI : 10.1016/0370-2693(81)90743-7

K. Strebel, Quadratic Differentials, 1984.