E. Salje and H. Zhang, Domain boundary engineering Phase Transit, pp.452-69, 2009.
DOI : 10.1080/01411590902936138

URL : http://eprints.esc.cam.ac.uk/1093/1/Salje_H_Zhang_Phase_Transitions_82-6_2009.pdf

E. Salje, Multiferroic Domain Boundaries as Active Memory Devices: Trajectories Towards Domain Boundary Engineering, ChemPhysChem, vol.38, issue.5, pp.940-50, 2010.
DOI : 10.2113/gscanmin.38.1.119

H. Yokota, H. Usami, R. Haumont, P. Hicher, J. Kaneshiro et al., obtained by second harmonic generation microscope, Physical Review B, vol.89, issue.14, p.144109, 2014.
DOI : 10.1107/S0567740872007976

G. Nataf, press) Control of surface potential at polar domain walls in a nonpolar oxide Phys

J. Seidel, D. Fu, S. Yang, E. Alarcón-lladó, J. Wu et al., Efficient Photovoltaic Current Generation at Ferroelectric Domain Walls, Physical Review Letters, vol.107, issue.12, p.126805, 2011.
DOI : 10.1103/PhysRevB.80.214110

J. Seidel, Conduction at domain walls in oxide multiferroics, Nature Materials, vol.9, issue.3, pp.229-263, 2009.
DOI : 10.1103/PhysRevB.71.060401

T. Rojac, Domain-wall conduction in ferroelectric BiFeO3 controlled by accumulation of charged defects, Nature Materials, vol.16, issue.3, pp.322-329, 2016.
DOI : 10.1111/jace.13839

C. Jia, K. W. Urban, and M. Alexe, Direct Observation of Continuous Electric Dipole Rotation in Flux-Closure Domains in Ferroelectric Pb(Zr,Ti)O3, Science, vol.103, issue.5, pp.1420-1423
DOI : 10.1103/PhysRevLett.103.057201

M. Schröder, A. Haußmann, A. Thiessen, E. Soergel, T. Woike et al., Conducting Domain Walls in Lithium Niobate Single Crystals, Conducting domain walls in lithium niobate single crystals, pp.3936-3980, 2012.
DOI : 10.1063/1.1606504

L. Arizmendi, Photonic applications of lithium niobate crystals, physica status solidi (a), vol.201, issue.2, pp.253-83, 2004.
DOI : 10.1002/pssa.200303911

S. Kim and V. Gopalan, Optical index profile at an antiparallel ferroelectric domain wall in lithium niobate, Materials Science and Engineering: B, vol.120, issue.1-3, pp.91-95, 2005.
DOI : 10.1016/j.mseb.2005.02.029

S. Kim, V. Gopalan, and B. Steiner, Direct x-ray synchrotron imaging of strains at 180?? domain walls in congruent LiNbO3 and LiTaO3 crystals, Applied Physics Letters, vol.23, issue.13, p.2051, 2000.
DOI : 10.1016/0022-4596(92)90189-3

G. Stone and D. , 2012 Innuence of ferroelectric domain walls on the Raman scattering process in lithium tantalate and niobate Opt, Lett, vol.37, pp.1032-1036

G. Stone, D. Lee, H. Xu, S. R. Phillpot, and V. Dierolf, Local probing of the interaction between intrinsic defects and ferroelectric domain walls in lithium niobate, Applied Physics Letters, vol.102, issue.4, p.42905, 2013.
DOI : 10.1103/PhysRevB.82.014104

J. Gonnissen, D. Batuk, G. F. Nataf, L. Jones, A. M. Abakumov et al., : Wall-Meanders, Kinks, and Local Electric Charges, Advanced Functional Materials, vol.12, issue.42, pp.7599-604, 2016.
DOI : 10.1039/b106279b

B. Vajna, G. Patyi, Z. Nagy, A. Bódis, A. Farkas et al., Comparison of chemometric methods in the analysis of pharmaceuticals with hyperspectral Raman imaging J. Raman Spectrosc, pp.1977-86, 2011.

I. Idarraga, M. Mermoux, C. Duriez, A. Crisci, and J. Mardon, Potentialities of Raman Imaging for the Analysis of Oxide Scales Formed on Zircaloy-4 and M5?? in Air at High Temperature, Oxidation of Metals, vol.246, issue.3-4, pp.289-302, 2012.
DOI : 10.1016/S0022-3115(97)00038-X

H. Witjes, M. Van-den-brink, W. J. Melssen, and L. Buydens, Automatic correction of peak shifts in Raman spectra before PLS regression, Chemometrics and Intelligent Laboratory Systems, vol.52, issue.1, pp.105-121, 2000.
DOI : 10.1016/S0169-7439(00)00085-X

H. Witjes, M. Pepers, W. J. Melssen, and L. Buydens, Modelling phase shifts, peak shifts and peak width variations in spectral data sets: its value in multivariate data analysis, Analytica Chimica Acta, vol.432, issue.1, pp.113-137, 2001.
DOI : 10.1016/S0003-2670(00)01349-0

R. Y. Sato-berrú, E. V. Mejía-uriarte, C. Frausto-reyes, M. Villagrán-muniz, H. Murrieta et al., Application of principal component analysis and Raman spectroscopy in the analysis of polycrystalline BaTiO3 at high pressure, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol.66, issue.3, pp.557-60, 2007.
DOI : 10.1016/j.saa.2006.03.032

S. Béchu, M. Richard-plouet, V. Fernandez, and W. J. Fairley, Developments in numerical treatments for large data sets of XPS images Surf. Interface Anal, pp.301-310

A. Borisevich, from Z-Contrast Scanning Transmission Electron Microscopy Image Atomic Column Shape Analysis, ACS Nano, vol.4, issue.10, pp.6071-6080, 2010.
DOI : 10.1021/nn1011539

M. Bosman, M. Watanabe, D. Alexander, and V. Keast, Mapping chemical and bonding information using multivariate analysis of electron energy-loss spectrum images Ultramicroscopy, pp.1024-1056, 2006.

H. Abdi and L. Williams, Principal component analysis, Wiley Interdisciplinary Reviews: Computational Statistics, vol.1, issue.4, pp.433-59, 2010.
DOI : 10.1007/BF02288367

URL : https://hal.archives-ouvertes.fr/hal-01259094

R. Cangelosi and A. Goriely, Component retention in principal component analysis with application to cDNA microarray data, Biology Direct, vol.2, issue.1, p.2, 2007.
DOI : 10.1186/1745-6150-2-2

M. Nakamura, H. Orihara, Y. Ishibashi, and K. Hara, by Micro-Raman Spectroscopy, Journal of the Physical Society of Japan, vol.59, issue.12, pp.4472-4477, 1990.
DOI : 10.1143/JPSJ.59.4472

T. Yu, Z. Ni, C. Du, Y. You, Y. Wang et al., Raman Mapping Investigation of Graphene on Transparent Flexible Substrate: The Strain Effect, The Journal of Physical Chemistry C, vol.112, issue.33, pp.12602-12607, 2008.
DOI : 10.1021/jp806045u

K. Nishida, H. Kishi, H. Funakubo, H. Takeuchi, T. Katoda et al., Evaluation of Residual Strain and Oxygen Vacancy in Multilayer Ceramic Capacitor Using Laser Raman Spectroscopy, Japanese Journal of Applied Physics, vol.46, issue.10B, pp.7005-7012, 2007.
DOI : 10.1143/JJAP.46.7005

G. F. Nataf, P. Grysan, M. Guennou, J. Kreisel, D. Martinotti et al., Low energy electron imaging of domains and domain walls in magnesium-doped lithium niobate Sci, p.33098