Role of Correlations in the Collective Behavior of Microswimmer Suspensions - CEA - Commissariat à l’énergie atomique et aux énergies alternatives Access content directly
Journal Articles Physical Review Letters Year : 2017

Role of Correlations in the Collective Behavior of Microswimmer Suspensions

Abstract

In this Letter, we study the collective behavior of a large number of self-propelled microswimmers immersed in a fluid. Using unprecedentedly large-scale lattice Boltzmann simulations, we reproduce the transition to bacterial turbulence. We show that, even well below the transition, swimmers move in a correlated fashion that cannot be described by a mean-field approach. We develop a novel kinetic theory that captures these correlations and is nonperturbative in the swimmer density. To provide an experimentally accessible measure of correlations, we calculate the diffusivity of passive tracers and reveal its nontrivial density dependence. The theory is in quantitative agreement with the lattice Boltzmann simulations and captures the asymmetry between pusher and puller swimmers below the transition to turbulence.
Fichier principal
Vignette du fichier
PhysRevLett.119.028005.pdf (568.99 Ko) Télécharger le fichier
Origin : Publisher files allowed on an open archive
Loading...

Dates and versions

cea-01687396 , version 1 (18-01-2018)

Identifiers

Cite

Joakim Stenhammar, Cesare Nardini, Rupert W Nash, Davide Marenduzzo, Alexander A Morozov. Role of Correlations in the Collective Behavior of Microswimmer Suspensions. Physical Review Letters, 2017, 119, pp.028005. ⟨10.1103/PhysRevLett.119.028005⟩. ⟨cea-01687396⟩
67 View
304 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More