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Research University, Sorbonne Universités, 75005 Paris, France
4 King’s College London, Department of Mathematics, Strand, London WC2R

2LS, United Kingdom
* mb4399@columbia.edu

December 1, 2017

Abstract

We study the out-of-equilibrium aging dynamics of the Random En-
ergy Model (REM) ruled by a single spin-flip Metropolis dynamics.
We focus on the dynamical evolution taking place on time-scales di-
verging with the system size. Our aim is to show to what extent
the activated dynamics displayed by the REM can be described in
terms of an effective trap model. We identify two time regimes: the
first one corresponds to the process of escaping from a basin in the
energy landscape and to the subsequent exploration of high energy
configurations, whereas the second one corresponds to the evolution
from a deep basin to the other. By combining numerical simulations
with analytical arguments we show why the trap model description
does not hold in the former but becomes exact in the second.
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1 Introduction

A large variety of liquids, if kept in the super-cooled metastable phase below the
melting point, exhibit a spectacular steep increase of the relaxation time as the
temperature decreases. Despite the inherently disordered microscopic structure,
this slowing down of the dynamics results in an effectively solid behaviour of the
sample, which is commonly denominated glass [1]. At high temperatures, the
system behaves as a simple liquid characterised by a fast dynamics [2]. When the
temperature T is lowered, motion both in real and configuration space becomes
gradually slower and the relaxation time extracted from dynamical correlation
functions increases faster than Arrhenius in the so-called fragile liquids. Such
behaviour is characteristic of activated dynamics in which a system in order to
relax (and flow) has to jump over larger and larger barriers as the temperature
is lowered, thus leading to a time-scale

τ(∆E) = τ0 exp(∆E/kBT ) , (1)

where ∆E increases when T decreases (τ0 sets the microscopic timescale, kB is
the Boltzmann constant which in this paper we will set to one).
A general theoretical understanding of activated dynamics, in particular ap-
proaching the glass transition, remains an open challenge although it is arguably
the central problem of glassy dynamics, and it has implications and ramifica-
tions in many other fields from computer science to biology. There has been
actually a lot of progress in the last decades in the study of infinite-dimensional
or mean field (MF) glassy models [3, 4] both regarding thermodynamical and
dynamical properties. However, since in MF models the energy barriers are
extensively high, activated dynamics takes place on time-scales diverging ex-
ponentially with N and is very difficult to analyze; indeed so far analytical
results have been obtained on the regime of times of order one [3] and there
have been only few works which addressed the role and the determination of
energy barriers [5, 6, 7, 8]. New information has been recently gained from
rigorous analysis of trap models and generalizations. As shown by Bouchaud
[9], the Trap model (TM) [10] provides a simple framework to study activated
dynamics. The TM describes a motion in the space of configurations in which
the only way to reach a new configuration is to attain a fixed energy threshold.
From these high-energy threshold, it is possible to reach any other point of the
phase space. Time scales in the TM are given by the Arrhenius law, and a
detailed analysis of the dynamics can be worked out [9, 11, 12, 13] (see [14, 15]
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for comparison and applications to glassy liquids). In recent years these results
obtained by physicists were shown to hold rigorously, and more than that, they
were generalized in many other contexts [16, 17]. This line of research culmi-
nated in the proof that the Random Energy model (REM) [18] (the simplest
mean-field glassy model) endowed with single spin flip Metropolis dynamics has
an aging dynamics on exponentially diverging time-scales effectively equivalent
to the one of TM [19, 20, 21] 1. Yet, it remained unclear how TM dynamics
emerges in REM. In this work we answer this open question by addressing the
following points: (1) What happens at shorter, subexponential, time scales, (2)
What is the mechanism that allows for a TM description at exponentially large
times, (3) How are observables influenced in the different time regimes, (4) The
role played by the energy landscape, and (5) The importance of finite size ef-
fects. All this additional information will be instrumental in the task of further
seeking for evidences of a trap-like dynamics in other disordered systems.

The two key features that make the REM different from the TM are (i) that
the states of the REM are defined on an N -dimensional hypercube, instead of a
fully connected space, and (ii) that the system follows physical dynamics, such
as single spin flip Metropolis Monte Carlo (MC), instead of the purely barrier-
passing trap dynamics.
These differences make REM dynamics more difficult and interesting than the
one of TMs. In particular, it retains some of the essential ingredients of ac-
tivated dynamics present in more realistic systems. Its study is therefore a
first step to develop a general theory. Developing a general understanding of
how and to what extent TM-like dynamics emerge at long times in the REM is
the aim of our work. In order to do this, we study dynamics on exponentially
growing time-scales by performing numerical simulations of finite systems. This
approach was pioneered by Crisanti and Ritort [22] to understand properties
of activated glassy dynamics. Previous results have been obtained for a modi-
fied (exponential) REM using a microscopic Hamiltonian based on the number
partitioning problem [23]. It was shown that many relevant observables such
as the distribution of trapping times and the aging functions (autocorrelation
functions), are indeed trap-like.
In the following, after setting up the notations and recalling the main models
and results used in this work, we shall first show to what extent and on which
time-scales REM dynamics is different from TM one. We will then explain and
show how on very large time-scales the TM dynamics emerge.

2 Models and simulations

This section is devoted to recall the definition of the models we will refer to, list
the results useful for our work, and set the notation.

2.1 Trap Models

Trap Models (TM) were proposed to give a first simplified framework for acti-
vated aging dynamics [9, 12]. They are defined in terms of a collection of M

1The proof of [20] was made public recently, while this work was already at an advanced
stage.
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configurations whose energies Ei are independent identically distributed (i.i.d.)
random variables extracted from an exponential distribution

ρexp(E) =
1

α
exp(E/α)Θ(−E) , (2)

where α > 0 is the mean of the exponential distribution, and Θ(x) is the Heav-
iside step function; when M = 2N , these configurations may represent all the
possible configurations of a system with N binary degrees of freedom, e.g. Ising
spins.
Their continuous time dynamics is defined as follows: at each time step a con-
figuration i is randomly chosen with flat probability 1/M among all the con-
figurations at disposal, the system remains trapped in the configuration i for
a trapping time t which is a random variable extracted from an exponential
distribution with mean

τi = τ0 exp(−βEi) , (3)

where β = 1/T is the inverse temperature, and τ0 sets the time unit. Once
it moves, the system jumps to a configuration drawn uniformly from the M
available ones and the process described above repeats.
Note that the inverse of the average trapping time can be interpreted as the
(Arrhenius-like) probability for the system to escape from its trapping configu-
ration i

PArr = exp(−β∆i) , (4)

once the configuration is surrounded in all the directions by barriers of height
∆i = Etop − Ei with Etop = 0. In other words, the energy landscape is like a
golf-course: during the dynamics the system needs to jump up to a fixed top
level of energy Etop in order to access the rest of the energy landscape. Once
this is achieved, the dynamics looses completely memory of the past because
any configuration is accessible from any other irrespectively from the past dy-
namical history, and any new configuration is equally acceptable. Due to these
two features TM dynamics is a renewal process [24] because after every jump
the process starts anew. Despite this strong simplification, the dynamics retains
a number of features that lead to a non trivial aging phenomenology, as it will
be evident in what follows.
It can be easily shown that the mean trapping times τ obtained from trap-
ping configurations with random energies E are random variables, power-law
distributed [9]

ψexp(τ) =
T

ατ

(
τ

τ0

)−T/α
Θ(τ − 1) ∝ 1

τ1+T/α
, τ � 1. (5)

The regime T/α < 1 (or T < α = Tc) corresponds to a dynamics with several
interesting properties [9]. Among these, the configurational average of the mean
trapping times τi is infinite (correspondingly the thermodynamic limit is not
defined: the partition function is divergent). Moreover taking a collection of n
of these random variables {τi} their sum is dominated by the maximum among
them:

∑n
i τi ∼ τmax. Equivalently, at a finite time from the beginning of the

dynamics, tw =
∑n
i τi, the system is trapped with finite probability in the lowest

trap among the ones already explored (the initial condition is drawn uniformly
from the M configurations). The energy Emin of the lowest trap can be therefore
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evaluated equating its trapping time τmax ' τ0 exp(−βEmin) to tw and inverting
the relation. Given that a great fraction of time is spent in the lowest trap, the
average energy also scales similarly with tw:

E(tw) = −T log

(
tw
τ0

)
. (6)

This is an example of aging behaviour in which the relaxation time of the system
is set by its age [25, 26].
TM are so simple that it is possible to explicitly evaluate average correlation
functions along the dynamics. The dynamical observable considered in the
literature is the persistence function C(tw, tw+t): it is non zero (and equal to 1)
as long as the system remains trapped in the same configuration between tw and
tw+t. As soon as the system escapes from the trapping configuration it occupied
at tw, the persistence drops to zero. The average value of the persistence is given
by the probability of not changing configuration between the two observed times
tw and tw + t, which is traditionally defined as Π(tw, tw + t). This quantity has
been found [9] in the large time limit to only depend on the ratio w = t/tw
according to the so-called Arcsin law [11, 16]:

lim
tw→∞,t/tw=w

Π(tw, tw + t) =
sin(πx)

π

∫ ∞
w

du

ux(1 + u)
≡ Hx(w) , (7)

where the parameter x depends on the mean α of the exponential distribution
ρexp(E), and on the temperature T of the dynamics as x = T/α < 1.

Gaussian Trap Model We will want to compare the TM to the REM, de-
fined in the next section. With this objective, as a first minor step towards a
more realistic model for activated aging dynamics, we also take into account
the Gaussian Trap model (GTM), in which the distribution of the energy is
Gaussian,

ρgauss(E) =
1√

2πN
exp

(
−E

2

2N

)
, (8)

and the distribution of trapping times is therefore

ψgauss(τ) =
T

τ
√

2πN
exp

(
− T

2

2N
log(τ/τ0)2

)
. (9)

Note that ψ(τ) is in this case lognormal.
This last model is directly inspired by the REM, introduced in [18]: the equilib-
rium properties of GTM (with M = 2N ) and REM coincide, but the dynamical
rules are different. In the case of the GTM, these are equivalent to the ones
defined before (for the REM see next section). From equilibrium studies, it is
known that this model shows a thermodynamic entropy-vanishing transition at
a critical temperature Tc ≡ 1/βc = 1√

2 log(2)
' 0.849 [18]. For what concerns

the dynamics, the GTM presents a dynamics with an infinite number of time-
scales. On each one of them the dynamics is effectively identical to the one
of an exponential trap model with a time-scale dependent α [27]. More pre-
cisely, the continuous time dynamics of the GTM behaves like the one of a TM
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with a parameter α(tw) = T/x(tw) = N/(T log tw) < 1 dependent on the age
of the system [13] if the times at which the dynamics is observed are properly
rescaled [11, 13, 28].2

2.2 Random Energy Model

As anticipated in the previous section, following its classical definition [18] we
call REM a model that is defined as a collection of M = 2N configurations
representing all the possible microstates of a system with N binary variables,
that we call spins. To each configuration is associated an i.i.d. quenched random
variable extracted from the Gaussian probability distribution ρgauss(E), previ-
ously shown in equation (8). 3

The most natural choice of dynamics to be considered for such a system is a
single spin flip MC Metropolis dynamics [29], the study of which has been the
motivation of a number of previous rigorous studies [21, 20] and will be the
focus of this work.
Beside the classical REM, to fill the gap between the REM and TM, we will
also consider a slight modification of this model that we will call Exponential
Random Energy model (EREM) [30]. In this model the distribution of energies
is exponential ρ(E) = ρexp(E); also for this model we consider a single spin flip
Metropolis dynamics as we do for the REM.
We underline again that from the equilibrium point of view REM and EREM
are alike GTM and TM, respectively. Dynamically, two major elements of dif-
ference are introduced: (1) the system is not in general expected at every step
to go back to the highest possible energy level at disposal, Etop; (2) since only
single spin flip moves are considered the number of neighbouring configura-
tion is N (instead of 2N ), hence the number of dynamical paths at disposal
is considerably reduced. In this case, the lattice representing the dynamical
connections between configurations separated by a single move is not fully con-
nected. It is instead a hypercube in dimensions N with edges corresponding
to the moves induced by the spin-flips. These two new ingredients, despite the
absence of static correlation between the energies of any pair of configurations,
might introduce correlations in the energies sampled during the dynamics, and
considerably change the aging behaviour.
Note that these two ingredients must be taken into account if we aim at develop
the description of an out-of-equilibrium dynamics for more realistic systems
where dynamics is always controlled by local moves and typical dynamical paths
may allow relaxation without stepping through high energy levels. The addi-
tional introduction of static correlations between the energies of neighbouring
configurations is a further element to consider when developing a theory of acti-
vated dynamics of realistic systems, but it will not be the argument of this work.

2This becomes evident if we rewrite (9) in the form of an exponential distribution in analogy
with (5) and define an effective T/α ∼ (T 2 log τ)/N where we know that the relevant time
scale of the system τ is given by its age.

3The variance of ρgauss(E) is slightly different from Derrida’s original definition [18], since
we have varE = N instead of N/2. This conveys that the critical temperature is rescaled by
a factor

√
2.
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2.2.1 Basic Features of the Energy Landscape

Before focusing on the out of equilibrium dynamics of these two models we
first list a number of features that characterise the typical local arrangement of
energy levels around a given (say deep) configuration C0.
In order to do this, we shall use results on extreme value statistics [31] that
we recall by using simple scaling arguments. We evaluate the typical energy
level of the lowest configuration, C1, among the N configurations surrounding
a given C0, of the second lowest configuration, C2, and so on and so forth, as
it is represented in Fig. 1. Since the energies of configurations are uncorrelated,

  

 N

1

0

3

2

Energy

Phase space

E
th

.

4

.

.

.

(2)

Figure 1: Schematic diagram of the connectivity of a low-lying configuration C0,
with its neighbours C1, C2, . . . , CN . Eth is the threshold energy, below which
we say that the system is in a basin. We define Eth as the typical value of the
smallest neighbour of any configuration (i.e. Eth = E(1)). The energy difference
δ(2) is defined in Eq. (14).

these typical energy levels will not depend on C0. The energy E(1) of the
lowest configuration among the nearest neighbours of C0 is the minimum of N
Gaussian variables, whose scaling can be obtained by evaluating the probability
that out of the N energies at disposal one has an energy contained in the interval
[−∞, E(1)]. The energy scale where this probability starts to be of the order of
one sets the scale of E(1), leading to the equation:

O(1) ∼ N
∫ E(1)

−∞
dEρ(E) . (10)

In the REM this leads to

E(1) ∼ −
√
N logN + x1

√
N

logN
, (11)

where the probability law of the order one variable x1 can be obtained from
extreme value statistics (it is the derivative of a Gumbel law) [31]. The result
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for the energy E(k) of the kth lowest configuration among the first dynamical
neighbours of C0 is analogous:

E(k) ∼ −
√
N logN + xk

√
N

logN
. (12)

where of course x1 < xk with probability one. The same arguments in the
EREM lead to

E(k) ∼ −α logN + xk . (13)

Note that the difference in energy,

δ(k) ∼ E(k) − E(1) , (14)

between the 1st and the kth deepest levels among N configurations at disposal
is diverging with N →∞ in the REM,

δ(k) ∼

√
N

logN
, (15)

and it is of order one in the EREM.
A final fundamental remark is that the ground state, or the configuration with
lowest energy, EGS , among all the M at disposal can be obtained from the
equation (10) by substituting N with M . It gives in the REM

EGS ∼ −
√

2N logM (16)

and in the EREM
EGS ∼ −α logM. (17)

When we consider a number of configuration M = 2N , the typical ground state
energy is in both cases extensive and corresponds to EGS ∼ −N

√
2 log 2 in the

first case, and to EGS ∼ αN log 2 in the second case.
Low temperature dynamics of REM and EREM (with T < 1/

√
2 log 2 and

T < α, respectively) will tend to reach this ground state energy in the long
time limit, leading the system to be trapped for long time intervals in very
deep configurations C0 surrounded by N configurations which are well above in
the energy landscape (leading to a golf-course like landscape as stressed previ-
ously). The system has to progressively decrease its intensive energy; however
any configuration with a negative intensive energy is surrounded by neighbours
that have typically zero intensive energy. This leads to an extremely slow and
activated dynamics which proceeds on time-scales diverging exponentially with
N .
An important difference between the two models is that, for the REM, dyna-
mics are activated and aging is observed until the system reaches equilibrium,
for T both over and under Tc. In the EREM, instead, only the low-temperature
phase has interesting dynamics. For T > Tc the dynamics of the EREM is fast
and not interesting for our purposes since the system remains floating at zero
intensive energy, and does not display aging.
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2.2.2 Energy Basin Description

In TMs, configurations are, by definition, schematic approximations of the deep
basins, that in more realistic models are made up of several configurations with
correlated energies. At first sight also for the REM and EREM basins consist
in single configurations as we have seen in the previous section. However basins
containing more than one configuration do exist (despite they are much rarer
than basins with single configurations, as a matter of fact they are still expo-
nentially numerous in N [21]) and as we shall show they can be relevant for the
dynamical behaviour, at least for certain observables. In the following, in order
to test if a TM description holds for the dynamics of the REM and EREM we
need to map the MC Metropolis dynamics into a sequence of basin jumps, and
hence give a pragmatical definition of basins. This mapping can be used also in
more realistic models; by studying it for the REM and EREM we shall unveil
subtleties and properties related to this mapping that can be useful when it is
applied to more realistic cases.
Given the high dimensionality of the energy landscape, it is not straightforward
to partition the system in a set of distinct basins. Therefore, inspired by a sim-
ilar analysis proposed recently in [32], we use a dynamical definition of basin,
which focuses on the one-dimensional dynamical path described by the energy
evolution as a function of time, E(tw). We choose a threshold energy Eth and
say that each time E becomes smaller than Eth the system is in a basin. When
finally E > Eth again, the basin is abandoned, and we say we are on the bar-
rier between two basins. A schematic representation is provided in Fig. 2. A
natural choice for Eth is the average minimum energy E(1) of the N configura-
tions that can be reached from any configuration C0 in a single dynamical step.
With this choice, almost all the neighbours of any configuration are typically at
E ≥ Eth. This energy level does not depend on the configuration C0 visited by
the dynamics, whose energy E0 is slowly decreasing towards EGS . Hence the
distance between Eth and the energy of the configuration typically explored by
the dynamics will become larger and larger in the long time limit in a similar
way as in TM dynamics.
Note that for short times, the visited basins are typically very close to Eth, im-
plying that the system has to age enough time before the energy basins become
similar to traps, where the system remains stuck for long times. In full gener-
ality, since within each basin B the system overwhelmingly spends the most of
the time in its lowest-energy configuration, we associate to B the energy of the
deepest configuration that belongs to that basin:

Ebasin = min
Ci∈B

E(Ci) . (18)

The same applies to any static property we mention of a basin: it refers to the
lowest-energy configuration within the considered basin.
Finally, to each basin we associate a trapping time as shown in figure 2.

3 Absence of trap-like behaviour on intermedi-
ate time scales

In this section we shall show that the dynamics of REM and EREM is not trap-
like on time-scales corresponding to the exit from a basin and the exploration
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log(t)

Eth
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t*

1(t
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E1(t
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(t
*) (t

*)
E(t*)

 Basins

Figure 2: A sketch of the energy evolution in either the EREM or the REM.
At a given time t∗, the instantaneous energy is E(t). Independently of whether
at time t∗ the system is in a basin or on a barrier, the energy of the next basin
is E1(t∗), calculated via Eq. (18). The times τ1(t∗), τ2(t∗) and τ3(t∗) are the
trapping times of the three basins following t∗.

of configurations at the threshold level. As we discuss in the next section, the
mapping to the TM only emerges on very large time-scales in a coarse-grained
way.
We first present numerical results concerning the dynamics of the REM and
EREM. For each series of simulation, we focus on three temperatures in the
glassy phase, T = 0.25, 0.50, 0.75, and T = 1.50 in the disordered phase. We
remind the reader that Tc = α (we choose α = 1) in the EREM, and Tc =

1√
2 log(2)

' 0.849 in the REM.

The system sizes are N = 8, 12, 16, 20, 24. The length of the run is trun =
21+A+N MC steps. The value of A was decided according to the wallclock time
availability. The amount of samples Nsam per parameter set, and other details
of the simulations are described in Table 1.

3.1 Non-renewal behaviour

In the following we focus on several observables that in the TM show that the
dynamics is a renewal process. This means roughly speaking that every time a
basin is abandoned, the system should completely loose memory of its past. As
we shall show, the behaviour we find is quite different.
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T N A trun (MC steps) Nsam

0.25, 0.50, 0.75 8 18 108 20000
0.25, 0.50, 0.75 12 18 109 12000
0.25, 0.50, 0.75 16 18 1010 6000
0.25, 0.50, 0.75 20 18 1012 1500

0.25, 0.75 24 18 1013 200
1.50 16 0 105 100
1.50 20 0 106 100
1.50 24 0 107 100

Table 1: Parameters of the simulations. We performed the same simulations
both for the Exponential and the Gaussian REM. The exact number of MC
steps of each run is trun = 21+A+N . In the column of trun we display the
order of magnitude of this number. Nsam is the number of independent samples
simulated with the given set of parameters.

3.1.1 Energy of the next basin

If we fix a time t, the system will likely be in a basin. As shown in Sec. 4.1, the
average energy E(t) depends on t approximatively as described by the relation
(6). So, indeed, the system is trapped in deeper minima at long times as in
the TM. However, in the TM, once a basin is abandoned then the energy of
the following one, E1(t) (see Fig. 2), should be completely uncorrelated, i.e. E1

is independent of E(t) (and hence of t). The situation is quite different in our
simulations of the dynamics of REM and EREM as shown in figure 3, where
E1(t) is instead clearly dependent on t and E(t).
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Figure 3: Energy of the next basin, E1, in the EREM (blue curves) and in the
REM (red curves), at T = 0.25. On the left side we show it as a function of time,
on the right side we show it as a function of the previous basin’s energy. The
data for the EREM levels out when the system has thermalised (thermalisation
times can be deduced from figure 9). In the right plot, we removed the points
at lowest energy because they were fluctuating. See also the caption of figure 4
for remarks on the measurement protocol.

11



3.1.2 Trapping time of the following basins

As well as the energy of the next basin, also the statistics of the trapping
time should be time-independent if the dynamics is renewal. We call τ1(t) the
trapping time of the basin that immediately follows the one found at t, τ2(t) the
energy of the next basin, and τ3 the one of the third basin after t. A schematic
description of the definition of τ1, τ2 and τ3 is provided in Fig. 2.
We see from figure 4 that τ1, τ2 and τ3 are not time-independent in the aging
regime, again in contradiction with the renewal property of a trap-like dynamics.
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Figure 4: The trapping times τ1, τ2 and τ3 in the EREM (left, T = 0.25) and
REM (right, T = 0.25, 0.75), for N = 20. In the EREM, results for T = 0.75
are not reported, because no sizable growth of τ1, τ2 and τ3 was found. The
time dependence is fairly visible, especially in the Gaussian case. The growth of
τ1 is stronger than that of τ2 and τ3, since it is the trapping time that preserves
the highest memory of t. Our measuring procedure excludes basins that, at the
end of the run, have not been abandoned. This gives a bias in the final points of
the curves, since towards the end of a run large basins are rejected more often
than small ones. The growth we observe is clearly visible despite this bias.

3.1.3 Rank of the deepest trap

After ntraps basins have been visited (we only count the last basin if the run
finished on a barrier), one can ask when the longest trap has been visited. To
be more precise, we assign a rank i to each basin, according to the order of
occurrence. So, i = 0 indicates the first basin, i = 1 the second basin, and
so on, until i = ntraps − 1 for the last basin. If the dynamics is renewal, the
trapping time τi of basin i follows the same probability distribution for any i.
Hence, any of the visited basins can be the one with the longest trapping time
with equal probability. Calling imax the rank of the basin with the longest τ ,
the distribution P (imax/ntraps) is flat in TMs. In figure 5 we show that for the
REM this is not the case.

3.2 Back and forth in the same basin

The non-renewal features of the previous section can be explained in a simple
way in terms of returns to the same basin. While in the TM the phase space
connectivity graph is fully connected, in the REM it is a hypercube, since a
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Figure 5: The distribution P (imax/ntraps) in the Exponential (left) and Gaussian
(right) REM, at T = 0.25. In the Gaussian REM, P (imax/ntraps) is significantly
non-flat, in contrast with the TM prediction.

movement is obtained by flipping one of the N spins.
More explicitly, in a TM, from each configuration the system can reach any of
the 2N states. On the contrary, in the REM only N configurations are connected
to each site, and of those only few (or one) of them are typically visited. The
smaller amount of available paths in configuration space conveys that there is
a finite probability that, when the system leaves a valley, the next visited basin
will be again that same one. What happens is that when the system manages
to jump out of a deep configuration it lands in a new configuration close to
the threshold level. However, the dynamics and the configuration space at the
threshold level is complicated (see later for a discussion) and before being able
to wander far from the initial configuration, the system repeatedly visits it. If
the system is in a very deep basin, it is likely that the next basin be very deep
too, since it is likely that the same basin be visited again.
Let us now confirm these statements by simulation results. We call S the num-
ber of spins that are different between each basin and the following one. S = 0
means that the same basin was visited twice in a row. In figure 6 we show
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Figure 6: P (S) in the Exponential (left) and Gaussian (right) REM, at T = 0.25.
A large fraction of times the system comes back to a just visited basin (S = 0).
This fraction does not show a visible dependence on N : already for N = 20 the
size dependence seems to have saturated.

that S = 0 a finite fraction of the times. Note that P (S) is an indicator of
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the basin size and the distance between basins. When increasing N , the P (S)
seems to converge to a limiting function, independent of N . In other words, for
large enough sizes P (S) does not depend on N . Since the typical basin size is 1
by construction (in the REM two configurations differing by one spin-flip have
uncorrelated energies), this indicates that the distance between basins is also
O(1). A second indication of this is found in Sec.4.2, where the times spent on
the barrier do not grow with N .
Finally, let us point out that one would expect that the distance between two
different basins be at least 2, since there should be at least one barrier configura-
tion between them. The fact that P (S = 1) is positive, though small, descends
from the fact that occasionally neighbouring configurations with E < Eth may
be counted as two separate basins at distance 1, because of our dynamic defini-
tion of basins. This happens when a transition to E > Eth was accepted after
visiting one, and before visiting the other.
We can quantify the phenomenon of immediate returns in the same basin by
computing the probability that the system falls twice in a row in the same basin.
We will focus on the simplest situation, that we call immediate returns, in which
the system returns to a basin immediately after having left it. This particular
case provides a lower bound to the frequency of returns, and can thus be used
to state that returns occur when N →∞.
Until now, we have studied the structure of the configurations dynamically
connected to a given C0, knowing that this structure does not depend on the
chosen C0, due to the independence of the energies from the configurations in
the EREM and REM. For the computation of the probability of immediate
returns we will assume that the system just left a basin. In other words we will
consider the case of a configuration C0 on the barrier (E0 > Eth) that is just one
spin flip apart from a configuration C1 that was deep down in the energy land-
scape (E1 < Eth). Apart from this, the other N − 1 configurations C2, . . . , CN
dynamically connected to C0 follow the standard statistics described by (12)
and (13). By construction, E1 � Eth ≤ E0 (see figure 7).

We now estimate the probability of immediate returns by simple arguments.

We call P
(acc)
i the probability of accepting a move from C0 to Ci. According to

the Metropolis rule,

P
(acc)
i = min[1, eβ(E0−Ei)] . (19)

In a sequentially updated dynamics, the system returns straight back to C1

when the other N − 1 attempted updates, leading to C2, . . . , CN , are rejected.
Since each move is accepted independently, the probability of rejecting all the
N − 1 moves is

P (rej) =

N∏
i=2

(1− P (acc)
i ) . (20)

Once any other move has been rejected we are sure that the system will go
back to C1, since E1 < E0. Hence, to evaluate the probability of an immediate
return, we need to estimate the probability of rejecting all the other moves,
paying attention to the energy structure of the configurations C2, . . . , CN (there
is no need to consider a sequential dynamics or that all moves are attempted
before C1, since the only thing that matters is the scaling of P (rej) when O(N)
attempts are considered).
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Figure 7: The diagram shows the situation we take in account for our computa-
tion. Each circle indicates a configuration in phase space, with its energy. The
horizontal line marks the threshold energy Eth. We consider the case in which
the system is found on the edge of a basin. It has just reached the configuration
C0 moving from C1 which lies deep down in a basin. In order to go immediately
back to C1 the subsequent O(N) moves towards its other N−1 neighbours need
to be rejected.

Since the energy differences between E0 and Ei scale in a different way in the
REM and EREM, we consider the two cases separately.

• REM. The energy E0 is by definition typically of the same order (but
slightly larger than) Eth. The neighbours of C0 do not coincide with
the configurations surrounding the initial configuration C1, the one deep
down in the energy landscape (figure 7). Thus, in order to estimate the
landscape around C0, one has to consider the minimal energies among
the N − 1 other neighbours of C0. These follow eq. (12), since consid-
ering N or (N − 1) neighbours leads to subleading corrections only. As
a consequence, we obtain that the typical difference between E0 and the
energy of its lowest neighbouring configuration (excluding C1) scales as

δ(2) ∼
√

N
logN in the large N limit. The probability distribution of this

difference can be obtained by using results from extreme value statistics,
but for our purposes it suffices to say that, with finite probability P up < 1,
the lowest neighbour of C0 (excluding C1) has a higher energy, of order

E0 +O(
√

N
logN ). In this case, since all other neighbours are even higher in

the energy landscape, the probability of accepting a move to one of these

neighbours is exponentially small in
√

N
logN ; therefore even after O(N)

attempts (the number of neighbours) it remains negligible, i.e. the prob-
ability of returning goes to one at large N . Note that with probability
1−P up, instead, the lowest neighbour of C0 (excluding C1) has an energy
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of order E0−O(
√

N
logN ). In these cases there is no immediate return since

the system directly goes to this neighbour if this move is attempted before
the one towards C1; depending on the neighbours of this neighbour, the
system could then be forced to return to C0 instead of exploring further
the landscape.

• EREM. In the EREM the computation needs slightly more care, because
the separation δ(2) between the lowest energy levels is of order one. We will
keep the reasoning simple and present just a rough (but essentially correct)
argument. We call again P up the finite probability less than one that the
lowest neighbour of C0 (excluding C1) has a higher energy of order δ(2) ∼
O(1). Let’s say that in this case we divide the neighbours of C0 (excluding
C1) in two groups: n which are the lowest in the landscape and have
therefore positive energy differences of the order one and N −n− 1 which
are typical configurations and have typical energies, hence a difference of
the order α logN . Within this construction, n is finite. We can then
estimate that

P (rej) >
(
1− e−βα

)n (
1− e−βα log(N)

)N−1−n
, (21)

which in the large N limit goes like

P (rej) >
(
1− e−βα

)n
e−N

1−βα
. (22)

In the high temperature regime, β < 1/α (where there is no aging) the
lower bound goes to zero, while in the low temperature regime, β >
1/α, (where there is aging) the lower bound remains finite and equal to(
1− e−βα

)n
. This implies that with finite probability the system returns

back to the initial basin. A refined argument can be worked out and leads
to the same conclusion, which is actually expected from the thermody-
namics of the EREM: for β < βc the system is sucked up by configuration
at zero intensive energies whereas for β > βc the system can return back
to C1, but it does so with probability less than one since it can accept a
move to a neighbour which has an energy difference of order one.
In cases where the lowest neighbour of C0 (excluding C1) has a lower en-
ergy of order δ(2) ∼ O(1) an analogous scenario holds, except that now if
the move to the neighbour with lower energy is attempted before the one
to C1 the system does not effectuate an immediate return with probability
one (but it can return with finite probability in a finite number of steps).

Overall we have found that the dynamics after the jump out from C1 is compli-
cated and cannot be described as trap-like: it actually corresponds to a complex
wandering on configurations at the threshold level and above. This explains the
numerical results shown at the beginning of this section. We can further confirm
that the returns are at the origin of the numerical findings by defining E1, τ1, τ2
and τ3 in a different way, that suppresses the effect from the returns. We define
Enr

1 as the energy of the first basin encountered, after t, with S > 0, i.e. im-
posing that the basin is not the initial one. The definition of τnr

1 is analogous.
Regarding τnr

2 and τnr
3 , we prescribe that all the recorded basins since t be new

ones.
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Figure 8: Left: comparison between E1 in the REM, and its counterpart Enr
1

that does not take in account returns to the just-visited basin. While E1 is
logarithmic in time, Enr

1 is constant, recovering the TM prediction. Right:
comparison between the trapping times τ1, τ2 and τ3, and their non-returning
counterparts τnr

1 , τnr
2 and τnr

3 in the REM. Also in this case the curves become
constant and collapse on each other once the returns are ignored. In both plots
we have N = 20, T = 0.25.

In figure 8 we show that both Enr
1 and τnr

1 , τnr
2 and τnr

3 fulfill the trap predic-
tion now that the returns are not being recorded. Note, however, that although
this indicates trap-like dynamics, we do not expect to find renewal dynamics
and hence all trap predictions to hold on the time-scale on which the system
performs a complex wandering at the threshold level and above. This happens
only on much larger time-scales as discussed and showed in the next section.

4 Trap-like dynamics on long time-scales

From the previous analysis we know that when the system is in a basin whose
energy is extensively below zero, i.e. limN→∞E/N < 0, it takes a time τJ
which diverges as e−βE to jump out of it. The dynamics that follows this
first jump consists in a wandering on configurations at and above the thresh-
old level and in returns to the initial basin. This exploration takes place on
times that differ from τJ by a multiplicative factor which vanishes at expo-
nential leading order in N . For example, for the REM the barriers that the
system has to overcome at the threshold level are of the order

√
N/ logN

therefore, even taking into account returns to the initial basin, the time-scale
τ to wander at the threshold level is still e−βE at exponential leading order:
(log τ)/N = −βE/N ' −βE/N +

√
1/N logN for N large.

As discussed previously, the dynamical processes following the jump out of the
basins are not trap-like and, instead, correspond to a quite complex evolution
in configuration space. However, if one observes motion on the time-scale e−βE ,
which packs together all times τ that differ for a multiplicative factor vanishing
at exponential leading order in N , then the wandering at the threshold level be-
comes a very fast process. On this time-scale, the system does many back and
forth motion and explores new configurations. In particular, it visits a number of
new configurations that diverges as a power law with N ; this should be enough
to loose memory and, hence, effectively move to another uncorrelated basin.
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Analogously, although there are correlations in the energies sampled during the
dynamics at the threshold level, they do not extend on timescales and hence on
a number of different visited configurations which diverge exponentially in N .
All that suggests that once dynamics is coarse-grained on time-scales expo-
nentially diverging with N an effective trap-like description should emerge, in
particular we expect the fundamental pillars of trap-like dynamics to hold:

1. At time t the lowest intensive energy e(t) sampled is given by the equation
t ∼ e−Nβe(t).

2. The number of basins N (t) visited until time t is given at the exponential
accuracy in N by the number of times one has to draw Gaussian random
energies in order to get a minimum of the order of e(t): N (t) ∼ eNe(t)2 .

3. Thermal equilibrium sets in for all configurations from energy zero to
energy e(t), i.e. at time t one gets an effective Boltzmann distribution cut
at energies lower than e(t).

These features imply the emergence of trap-like aging dynamics on exponen-
tially diverging time-scales, as indeed very recently proven in [20].
In the following, we confirm this result through numerical simulations. As we
shall show, important finite size-time effects correct the trap-like predictions.
Low temperatures make the dynamics so slow that it is very difficult to probe
the regime in which energies are extensively below Eth. At the same time, im-
portant finite size effects are observed for temperatures close to Tc. All that
is particularly cumbersome in the REM, where the fact that trap-like aging
emerges on an infinite spectrum of exponentially diverging time scales makes
the analysis even more difficult.
Note that above we have stated the trap-like properties in terms of basins and
not configurations. As discussed in the previous sections a basin typically con-
tains just one configuration. For observables that probe typical behaviour as for
example the aging function considering basins or configurations is equivalent;
however for observables for which rare effects are enhanced this might be incor-
rect. For instance, the number of jumps done until time t behaves differently if
one considers basins or configurations. In the former case the usual trap predic-
tion holds, whereas in the latter the back and forth motions within rare basins
formed by more than one configuration bias completely the statistics which,
depending on the regimes, can be different from the trap prediction; see [20] for
a detailed discussion and results. Moreover, also from the numerical point of
view, considering basins or configurations is not equivalent. As we shall show,
the former leads to smaller asymptotic corrections and is therefore preferable.

4.1 Logarithmic decrease of the energy

During aging, the trap prediction is that the intensive energy decreases loga-
rithmically in time as −T (log t)/N , see equation (6). Figure 9 shows that, at
T = 0.25, for the largest system sizes this is fairly reproduced both for EREM
and REM; the deviation from the logarithmic behaviour is mainly due to equi-
libration at long-times. The result is not as good when T = 0.75. We attribute
this to the emergence of extremely strong finite-size effects as T approaches
Tc. This explanation is confirmed by the fact that, despite being very big for
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Figure 9: E(t) in the EREM (left) and in the REM (right). The temperature
is T = 0.25 on top, and T = 0.75 on the bottom. The solid lines represent
equation (6). The dotted horizontal lines on the left side indicate the ground
state energy. When the curve E(t) reaches its equilibrium value, the system has
thermalized, and it is no more in the aging regime. The solid horizontal lines in
the top-right plot are the predictions of the equilibrium free energy according
to reference [33], which takes into account logarithmic corrections. It was not
possible to plot the same predictions for T = 0.75, because the logarithmic order
was not enough to obtain reasonable predictions.

T = 0.75 and smaller for T = 0.25, deviations between TM predictions and ob-
servations decrease as N grows in both cases. As a matter of fact, the finite-size
corrections to the free energy diverge as T → Tc [33], so the closer the system
is to the critical temperature, the larger it needs to be.

4.2 Trapping times

The hallmark of a trap-like dynamics is the power-law distribution of the trap-
ping times ψexp(τ). In the EREM case it follows the power-law behaviour of
equation (5). At T = 0.50, 0.75, 1.50 the prediction is beautifully satisfied both
for the basin and for the configuration trapping times, even for T > Tc (figure
10). This is not the case for T = 0.25. At this temperature dynamics is so
slow that the aging regime cannot be explored in extent, one needs longer times
to enter the trap-like regime in which the typical configuration has E < Eth.
Anyhow, the data are compatible with the trap prediction both in the exponent
and in the fact that basin and configuration observables behave in the same
way. As anticipated above, some tuning of the parameters (temperature, size of
the system) is necessary in order to avoid big finite time-size corrections.
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Figure 10: The distribution of the logarithm of the trapping times
ψexp(log(τ)) ∝ τ−T/α with βc = 1/α in the EREM for T = 0.25, 0.50, 0.75, 1.50.
The red data are the times τconf before each configuration is abandoned, the
blue data represent the time τbasin spent in each basin, and the green data are
the times spent on the barriers. The black line is the trap prediction (5). The
exponent is different because we are plotting ψexp as a function of log(τ).

In the REM the trap prediction for ψgauss(τ) follows equation (9), which is not
a power law. 4 As found for the EREM, at T = 0.25 the simulations require
too long times and it is not possible to compare ψgauss to the prediction. On
the other side, at T = 0.75, the data fit very well both for the basins and for
the configurations (figure 11).

A note on the consistency of the results at different temperatures
Since all temperatures under Tc are equivalent when one seeks the qualitative
behaviour of the model, in principle showing results only for one temperature
would be enough. There is a reason why one should focus on more than one
temperature, and it is that there are two sources of quantitative (not qualitative)
changes which depend on T , and we can only choose to rule out one or the other
in a single simulation:

(a) When Tc is approached, the finite-size effects on the free and equilibrium
energy are larger [33]. Thus, all other things being equal, close to Tc one
has to consider larger system sizes.

(b) Many of the dynamical behaviors we are interested in only appear on
exponentially long time scales, t >> exp(a(T )N), with a(T ) growing as

4Only on a given exponentially diverging time-scale the usual power law is recovered as we
recalled in Section 2.
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Figure 11: Distribution of trapping times ψgauss(τ) in the Gaussian REM, for
T = 0.75. Configuration trapping times on the left, and basins on the right. The

curves represent fits to the function f(log(τ)) = A exp(− T 2

2N log( ττ0 )2), which is
the long-time prediction of ψgauss(τ) [equation (9)]. Fits exclude the last point,
because we expect that the finiteness of our simulations can bias on the sampling
of the longest times.

T is lowered. As a consequence, the temperature has to be high enough
otherwise interesting phenomena emerge on prohibitively large time-scales.

Given the competition between the two effects, one happening at low and the
other at high temperature, we simulated several temperatures, in order to be
able to be in the correct regime for each observable.

4.3 Aging functions

As discussed in section 2.1, all the relevant information of the correlation func-
tions for trap dynamics is contained in the aging function Π(tw, t), which rep-
resents the probability of not changing trap. To study the trap behaviour of
the aging dynamics in the REM and EREM, we observed the behaviour of this
function by considering either basins and configurations for the sake of compar-
ison (as done in [32]). We then defined the probability of not changing basin
Πbasin(tw, t) or configuration Πconf(tw, t) between a time tw and t = tw(1 + w)
(w > 0).

4.3.1 Aging functions in the EREM

In the large-time limit of aging dynamics of TMs, Π(tw, tw(1 + w)) converges
to a value Hx(w), with x = T/α, that can be computed analytically [11, 16].
In figure 12 we show the aging functions Πbasin(tw, t) for different sizes N and
different temperatures in the EREM (left) and REM (right).
We can distinguish two regimes, an initial plateau regime corresponding to the
aging regime (associated to tw →∞ after N →∞) and a long-time decay once
the system thermalised (associated to tw → ∞ before N → ∞). The plateau
becomes more and more pronounced as the system size increases, as expected.
In the plateau regime, the trap prediction given by Hx(w) applies well to the
basin aging functions and less well to the configuration aging function, indicating
that activated dynamics in the EREM is effectively trap-like as long as we focus
on basins. We interpret the discrepancy between the TM prediction and the
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Figure 12: Aging functions REM for w = 0.5. From top to bottom: T =
0.25, 0.50, 0.75 < Tc. On the left we depict the Exponential, on the right the
Gaussian REM. We show the basin and configuration aging functions, for dif-
ferent system sizes. Note the different scale for Π in the two top sets. In the
left plots, the blue horizontal lines represent the infinite-time limit of the aging
function for an infinitely large system [recall equation (7)]. The horizontal lines
in the center-right plot show the effective value of the effective infinite-time
prediction for the aging functions (see main text). The top one is calculated
on the basin’s ψgauss(τ), the lower one is on the configuration ψgauss(τ). The
horizontal lines on the bottom-right plot represent a confidence interval for the
same quantity, averaged between basins and configurations.

configuration aging function as a finite time effect: the lower the temperature,
the larger the time needed to enter in the trap-like dynamics regime where the
energy is intensively lower than Eth and a basin is really formed by just one
configuration. Accordingly, we should observe for very large system sizes (for
which the plateau of the aging function extends to very large time scales) a
slow upwards drift of the plateau of the configuration aging function towards
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the plateau of the basin aging function. A hint of this upward drift seems to
appear in the long time limit of aging function obtained at the lowest observed
temperature T = 0.25 and for the largest system size considered in figure 12.

4.3.2 Aging functions in the REM

In the case of the REM, the interpretation of the data is less straightforward,
as it is seen in figure 12 (right), because the plateau regime is not well-defined.
This is due to the fact that in the REM the trap-like dynamics is visible only
if the exponentially diverging time-scales are well separated. This would only
happen in the right scaling limit of infinitely large systems and times. We can try
nevertheless to extract an effective aging function to compare with. Equation
(9) can be seen as a power law with an exponent that depends on the simulation
time: according to the length of the run, one can extract an effective exponent
xeff(t) = T

T eff
c (t)

.

Two equivalent ways can be used to extract it. The first method is to fit to a
power law the final part of the curve ψ(log(τ)). By comparison with equation
(5), xeff(t) is the exponent of the curve. A second way is to use the relation,

valid in the asymptotic limit, xeff(t) = −TE(t)
N that only requires the knowledge

of the average energy E(t) reached in the simulations at time t.
The two methods of extracting the effective asymptotic values of the aging
functions give compatible values, that are plotted in figure 12 (right), and show
that numerical results are not incompatible with a trap behaviour. Further, as
stated in section 4.2, at the lowest temperature, T = 0.25, the simulation time
was too small to sample well the phase space. As a consequence, we could not
extract an effective exponent xeff . Clearly much larger size and times would be
needed to enter the asymptotic regime. Remarkably, a recent numerical study of
generalised trap models [28] has shown that the very same problem also arises in
simpler models with a gaussian distribution of energies. The analysis developed
in [28] could be applied to the REM case in order to find more stringent evidences
of trap dynamics.
Finally in agreement with the results for the EREM, we find also in this case a
more pronounced difference at low temperature between basin and configuration
descriptions.

5 Conclusions

We have shown how the main features of TM-like dynamics emerge effectively
on exponentially diverging time-scales in the case of the simplest mean-field
glassy models (REM and EREM). Despite motion in configuration space is
complex on intermediate time-scales, in particular at the threshold level and
above, with frequent back and forth movements in configuration space, the very
large separation of time-scales washes out correlations induced by the explo-
ration of the landscape, and hence memory. As a result, by coarse-graining
dynamical evolution in terms of basins, a full TM description of the dynamics
holds, in agreement with very recent rigorous results [20]. Identifying traps with
basins instead of configurations is, as we have seen, important both numerically,
to reduce pre-asymptotic corrections, and theoretically (see [20]). Only in this
way a complete TM description can be reached. This will be even more cru-
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cial in studies of more complex and rich models, for which our results provide
guidelines.

The natural next step is to study the p-spin model, that in the large p limit
converges to the REM [18, 34]. In our study we found that in the activated
dynamics regime the system has always to reach and wander at the threshold
level in order to escape from a basin and loose memory of the past. Whether
this holds in general is a very interesting question which would shed light on
whether an effective TM description is valid more generally. An interesting pos-
sibility is that to escape from a deep minimum the system only needs to reach an
energy level which is lower than the threshold, which is identified as the lowest
energy reached during aging dynamics on time-scales of order one. This would
be an important first piece of information to understand activated dynamics in
realistic system such as super-cooled liquids whose energy landscape displays
strong similarities with the one of mean-field glassy systems [3].
These questions can be addressed applying our approach to p-spin or more gen-
eral models. Work is in progress in this direction [35].
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Physique des Houches LXXXIII “Mathematical Statistical Physics”, page
331, 2006.

[17] Gérard Ben-Arous, Anton Bovier, and Véronique Gayrard. Aging in the
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