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In this work we study the stability of the equilibria reached by ecosystems formed by a large
number of species. The model we focus on are Lotka-Volterra equations with symmetric random
interactions. Our theoretical analysis, confirmed by our numerical studies, shows that for strong
and heterogeneous interactions the system displays multiple equilibria which are all marginally
stable. This property allows us to obtain general identities between diversity and single species
responses, which generalize and saturate May’s bound. By connecting the model to systems studied
in condensed matter physics, we show that the multiple equilibria regime is analogous to a critical
spin-glass phase. This relation provides a new perspective as to why many systems in several
different fields appear to be poised at the edge of stability and also suggests new experimental ways
to probe marginal stability.

Many complex systems in Nature organize in states
that are poised just at the edge of stability. The grow-
ing evidence comes from physics [1], biology [2], ecology
[3], neuroscience [4, 5] and economy [6]. One important
common trait of all examples is that they are formed by
strongly interacting units—species, neurons, agents and
particles depending on the situation. The possible expla-
nations of such phenomenon are varied. They include the
need for flexibility and adaptiveness to time-varying con-
ditions [2, 7], balance between functionality and stability
[7], self-organized criticality [8], self-organized instability
[9], and continuous constraints satisfaction [1].
Here we address this problem focusing on generalized
Lotka-Volterra (LV) equations. They provide a simple
and general setting to study assemblies of interacting de-
grees of freedom; as such they are used in several fields
[10–13]. In particular, they provide a canonical model for
ecosystems, with growing connections to systems across
biology [10, 11, 14]. The study of stability of equilibria
and their properties using LV equations and generaliza-
tions has become a very active research subject. Several
important results were obtained recently; in particular
general techniques to count the number of equilibria and
their properties have been developed [15], and criticality
and glassiness have been found to be emergent proper-
ties of ecosystems [16–18]. Our approach unifies these
different perspectives and, by a mapping to condensed
matter systems, reveal their generality beyond LV mod-
els. Henceforth, in order to describe it, we shall use the
terminology employed in theoretical ecology.

In the model we consider, an ecological community is
assembled from a pool of available species. We focus
on the case relevant for the examples cited above, and
in many other situations, when the number of species is
large. Since the detailed parameters of all interactions are
not known in the majority of cases, and in any case not

all details are expected to matter [19], we follow the long
tradition pioneered by May in ecology [20] and Wigner in
physics [21], and sample the interactions randomly. How-
ever, we go beyond May’s classical work since randomness
is here introduced at the level of interactions between all
possible species, while the community self-organizes by
choosing which species are present. In other words, the
number and identity of the species that are present in
the community is selected dynamically [22, 23]. Under-
standing the emergent stability of the equilibria reached
dynamically and its dependence on the external param-
eters is the main purpose of this work.
We find, in agreement with [16, 18, 24], that when the
interactions are weak or highly uniform, only one equi-
librium is present and is determined mainly by self-
regulation within each species. For stronger and more
heterogeneous interactions, multiple equilibria emerge.
Our main result is that when this happens, all possible
states of the system are close to be marginally stable for
large number of species and this determines the diver-
sity of the ecosystem, see Fig. 1. Marginal stability has
several important consequences, in particular it leads to
extreme susceptibility to small perturbations. This sit-
uation is referred as “critical” in the physics literature
[25]. May famously suggested that complexity and in-
teractions limit the stability of ecosystems [20]. Our re-
sults provide a complementary perspective: complex eco-
logical communities reduce dynamically their instability
through a reduction of the possible number of surviving
species, i.e. diversity, and eventually reach a marginally
stable state saturating May’s bound. Since this phe-
nomenon stems from a dynamical process, it holds for
a broad range of system parameters. It is robust against
a range of variations in the model, including different
functional forms of responses and interactions, as well
as noise. Although in many physical cases criticality
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FIG. 1. Possible scenarios for the energy landscape associated
to Lotka-Volterra dynamics. (A) There is only a single equi-
librium, i.e. a unique global and local minimum, as illustrated
by the cartoon of the energy landscape. The correspond-
ing density ρ(λ) of eigenvalues of the stability matrix associ-
ated with a given minimum (the Hessian) has a strictly pos-
itive support and the number of species in the community is
strictly smaller than May’s bound. Here we show the numer-
ical example obtained for the standard Lotka-Volterra model
(f(N) = 1 − N , ri = Ki = 1 and µ = 4, σ = 0.5, S = 400).
As explained in the text, for a large number of species, ρ(λ)
is in this case a shifted Wigner semi-circle. (B) The energy
landscape is rugged: there are many equilibria and local min-
ima, as illustrated by the cartoon of the energy landscape.
The corresponding density ρ(λ) of eigenvalues of the stabil-
ity matrix associated with a minimum has a support whose
left edge touches zero, corresponding to marginal stability,
and the number of possible surviving species saturates May’s
bound, see Fig.3. Here we show the numerical example ob-
tained for the standard Lotka-Volterra model (f(N) = 1−N ,
ri = Ki = 1 and µ = 4, σ = 0.9, S = 200) in blue and for a
different functional response (f(N) = 1 − N − 3/4(N − 1)2,
ri = Ki = 1 and µ = 4, σ = 0.5, S = 200) in magenta. In the
former case ρ(λ) is a shifted Wigner semi-circle, whereas in
the latter it has a different shape.

emerges only at phase transitions, i.e. for very special
values of the parameters, there also exist critical phases of
matter which instead cover a wide portion of their phase
diagram. By relating the LV model to systems studied in
condensed matter physics, the multiple-equilibria regime
is shown to be akin to a critical spin-glass phase. This
suggests that the applicability of our results goes well be-
yond the LV model we consider and it offers a possible
explanation of why so many different systems are found
at the edge of stability: they are in a critical marginally
stable phase. It also makes clear that this result, while
general, is expected to have a well-defined regime of va-
lidity, as we shall explain at the end of this work. Finally
it makes predictions on some distinctive features of the
dynamical behaviour of ecological systems at criticality,
which will be interesting to test.

The Lotka-Volterra model we focus on is defined as
follows. There are S species in the regional pool, whose

abundance is Ni ≥ 0. The dynamical equations read

dNi
dt

=
ri
Ki
Ni(Ki−Ni)−Ni

∑
j,(j 6=i)

αijNj +
√
Niηi(t) + λ

(1)
where ri is the intrinsic growth rate of species i, and Ki

is the carrying capacity. It corresponds to the equilib-
rium abundance to which species i would self-regulate in
absence of interaction. For sake of clarity, in the follow-
ing we focus on the case where ri and Ki are constants
(set equal to one by rescaling the other parameters).
Later, we shall consider the effect of variability in ri and
Ki, and also different functional responses by replacing
Ni(Ki −Ni) with more general forms, such as Nif(Ni).
The interaction between species is encoded in the matrix
αij . We also add a small (infinitesimal) immigration rate
λ to ensure that all invadable species exist1. Finally, ηi(t)
is a white noise with variance 2ω2, and

√
Ni captures the

scaling of demographic noise2. We consider a symmetric
interaction matrix αij = αji, corresponding to competi-
tive (or weakly mutualistic) interactions; we will discuss
in the conclusion the effect of asymmetry. Except for this
constraint, no additional structure (such as trophic lev-
els or space) is included, and the entries αij are taken to
be independent identically distributed random variables.
Note that, as already anticipated above, the assumption
on the randomness is done at the level of the pool and
not of the community. The random variable αij can be
drawn from any distribution without long tails, all that
matters are its mean and variance. It turns out that the
parameters that play a role in the final theory are the
average number of links, C, per site and the first two
moments of αij though the combination µ = Cmean[αij]
and σ2 = Cvar[αij]. For the sake of clarity, we now focus
on the case C = S in which all species interact, exten-
sions are discussed at the end of this paper.
The LV eqs. can be rewritten in a way that makes their
relationship with stochastic equations studied in physics
more transparent:

dNi
dt

= −Ni

∇Ni
Vi(Ni) +

∑
j,(j 6=i)

αijNj

+
√
Niηi(t) +λ

(2)
where the ”potential” Vi(Ni) is equal to ri

Ki
(−KiNi +

N2
i /2). Without noise these eqs. admit a Lyapounov

function

L = −
∑
i

Vi(Ni)−
1

2

∑
i 6=j

αijNiNj + λ
∑
i

logNi .

1 A species dependent λi would not change the results of our anal-
ysis.

2 We use Ito’s convention for the multiplicative noise since it cor-
rectly captures the fact that a species with Ni = 0 remains at
zero abundance also in presence of noise.
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In presence of noise, eqs. (2) are generalized Langevin
equations. In the SI we show that they represent equi-
librium dynamics of a thermal system with tempera-
ture T = ω2 and characterized by the following effective
Hamiltonian, or energy, H = −L +

∑
i T logNi. As a

consequence, the long-time stationary probability distri-
bution is the Boltzmann law: P = e−H/T /Z, where the
partition function Z guarantees the normalization. This
result reveals that understanding the equilibria and the
dynamics associated with the LV eqs. (1) can be exactly
reformulated as a problem of statistical physics of ther-
mal disordered systems, in which the Ni represent the de-
grees of freedom interacting via random couplings αij and
subjected to individual potentials3 Vi(Ni)+(T−λ) logNi.
Therefore, we can deduce properties of the equilibria
reached dynamically by a thermodynamical analysis. In
particular, without noise, i.e. at zero temperature, the
equilibria correspond to the minima of the energy func-
tion, i.e. to the ground state and the metastable states.
In order to obtain the full solution of this model we shall
use tools developed in statistical physics of disordered
systems, including replica computations, discussed in de-
tail in the SI.

The phase diagram without noise, i.e. at zero tempera-
ture, and for small migration, λ→ 0+, has been obtained
in [24]. We reproduce it in the SI for completeness (Fig.
6) and show that it coincides, as it should, with the one
obtained by the replica method. One finds that when in-
teraction strengths are all identical, all species coexist in
the community when µ > 04. By increasing the variabil-
ity in the interactions, more and more species are driven
out of the community. They are characterized by Ni = 0
for λ→ 0+ (we will call them “extinct” henceforth). The
equilibrium reached dynamically is stable under pertur-
bations, that is by changing Vi(Ni) → Vi(Ni) − ξiNi,
and there is a gap in the spectrum of the correspond-
ing stability matrix5 [24], see Fig. 1(A). Note that in
this regime the final community composition is unique,
independent of the assembly history, e.g. , the initial
conditions for the dynamics. This picture persists up to
σc = 1/

√
2. By increasing randomness in the interactions

above σc a transition to another regime, which is sharp
for large systems, takes place. Our purpose is to study
the phase reached when crossing the transition. Hence-
forth we continue to focus on the zero-noise case, the
effect of the demographic noise is discussed at the end of
the paper.

3 We restrict our analysis to the case T < λ, otherwise all species
go extinct at long times.

4 The range −1 < µ < 0 is not of interest for this work because
the multiple equilibria phase we want to study is not present.

5 This matrix, determining the stability under changes that af-
fect the carrying capacities, is different from the one governing
stability under the demographic noise ηi.
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FIG. 2. Single species response as a function of σ for two
given species in an equilibrium reached dynamically for the LV
model with ri = Ki = 1 and S = 400. The numerical results
follow the continuous line, which is the analytical prediction
valid in the large S limit for all species. The fluctuations
are finite S effects. The single species response first increases
with σ and then sticks to the value 2 in the whole marginally
stable phase.

In physics terms, the single equilibrium regime cor-
responds to a “paramagnetic phase” where the zero-
temperature values of the degrees of freedom Ni are
mainly fixed by the external potential Vi(Ni) and a mean-
field anti-ferromagnetic (competitive) interaction. By in-
creasing the randomness in the αijs the system undergoes
a zero temperature phase transition toward a spin-glass
phase, characterized by many local minima of the en-
ergy (or maxima of the Lyapounov) function and, hence,
multiple equilibria. We have used the replica method to
study it (see SI) and found that the regime with mul-
tiple equilibria corresponds, technically, to a full replica
symmetry breaking solution. On the basis of all previous
analysis of mean-field6 spin-glasses [26, 27], we can then
make general statements about the regime with multiple
equilibria.
First, it is characterised by a large number of equilibria.
These equilibria are minima of the energy, separated by
regions with higher energies that form what are called
barriers. The lowest equilibria are typically separated
by barriers that diverge in the large S limit, while the
higher ones by barriers of order of one, i.e. that do not
scale with S [28]. Second, and central to our discus-
sion, all minima display a stability matrix characterized
by arbitrary small eigenvalues for large S, i.e. minima
are marginally stable and characterized by flat directions
in the energy landscape at quadratic order. The ground
state has this property and, naturally, the higher energy
local minima too.

We now explain the main findings of our thermody-
namic analysis and relate them to random matrix theory

6 Here the term mean-field refers to the fact that the underlying
interaction network is fully connected, and not (as often used in
ecology) that all interactions are identical in strength.
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FIG. 3. Diversity φ in the standard LV case, f(N) = 1 − N
and ri = Ki = 1, as a function of σ and for S = 100, 200, 400.
The diversity hits and sticks to the May bound throughout
the entire multiple equilibria phase. The difference with the
analytical predictions are finite S effects.

results, see SI for details. The two main observables we

focus on are: (i)
∂N∗i
∂ξ∗i

, which is the response of a single

species to a perturbation V (Ni)→ V (Ni)− ξiNi, where
the star indicates that only non-extinct species are con-
sidered and (ii) φ ≡ S∗/S, which is the fraction of species
present in the community, called diversity in what fol-
lows. For identical interaction strengths, i.e. at σ = 0,

all species coexist (φ = 1) and
∂N∗i
∂ξ∗i

= 1. Increasing σ we

find that
∂N∗i
∂ξ∗i

is constant across species and increasing.

Concomitantly, the diversity decreases. As found in [24],
at σc = 1/

√
2 the system undergoes a sharp transition

from the single to the multiple equilibria regime. This
corresponds physically to a phase transition to the spin-
glass phase. In this phase we find that for all equilibria
and all species i,

∂N∗i
∂ξ∗i

=

√
1

φcσ2
c

= 2 and φσ2 = φcσ
2
c =

1

4
, (3)

where φc is the value of the diversity at the transition.
These identities hold throughout the entire multiple equi-
libria phase and they are consequences of the criticality
of the spin-glass phase. We also find that for σ > σc the
number of equilibria, i.e. of energy landscape minima is
exponential7 in S. Figs. 2 and 3 confirm our analytical
predictions by showing respectively numerical results for
∂N∗i
∂ξ∗i

and φ corresponding to a given equilibrium reached

dynamically.

7 The number of minima scales as ehS where h goes to zero at
the transition from one to multiple equilibria. One cannot do
general statements on its order of magnitude, since it depends
on the external parameters and on the model, in particular the
functional response f(N). When comparing to numerical and
experimental results, it is important to keep in mind that it can
be small, as we found for instance for the standard LV model.
In consequence even for rather large S ∼ 100 the number of
equilibria may be modest, see SI.

The second identity in (3) corresponds to a saturated
form of May’s original bound8, var(αij) = 1/(4S∗) =
1/(4C∗), where C∗ is the average number of interactions
per surviving species [20]. In order to reveal this connec-
tion with random matrix theory we focus on the S∗×S∗
stability matrix M∗ associated to a given equilibrium,

defined by the relation (M∗)−1
ij =

∂N∗i
∂ξ∗j

. Using the fixed

point equation corresponding to (1) it is easy to check
that

M∗ij = δij + αij (4)

In this equation the indices i, j have to be reduced to
the surviving species since extinct species remain so if
one adds an infinitesimal perturbation ξj , and do not
contribute to the stability of the equilibrium reached dy-
namically9. Following procedures developed for mean-
field spin-glasses [29], one can show (see SI) that the spec-
trum of M∗ij is identical for large S to the one of a S∗×S∗
matrix with independent identically distributed Gaussian
off-diagonal entries having the same first and second mo-
ment of αij . This is by no means trivial since the equilib-
rium reached dynamically, and hence the identity of the
surviving species, depend on αij and induce correlations
in the off-diagonal elements ofM∗ij [30]. The relation with
random matrices implies that the eigenvalue density of
the stability matrix is a Wigner semi-circle with support
[−2σ

√
φ + 1, 2σ

√
φ + 1], as we indeed find numerically,

see Fig. 1. Moreover, this directly connects (3), which
holds in the entire spin-glass phase, to marginal stabil-
ity. We have therefore recovered May’s original stability
bound but in a saturated form: the number of surviving
species, Sφ, is exactly the one guaranteeing that the sys-
tem is poised at the edge of stability, similarly to what
was proposed in the self-organized instability scenario [9].

Let us now discuss extensions and the range of validity
of our results. We have verified that our conclusions on
the multiple equilibria regime continue to hold for several
different convex functional responses f(N), the standard
f(N) = N(1−N) being only an example among others,
and with variability in the values of ri and Ki. This is
a direct consequence of the properties of the spin-glass
phase to which the multiple equilibria regime is related
to. In these more general cases, the critical character of
this phase is encoded in the following identity valid for
the average of the square of the single species response

8 The prefactor 4 comes from the symmetry of αij in the present
model.

9 In the limit of small migration, λ→ 0+, extinct species are those
that cannot invade: ∇Ni

Vi(0) +
∑
j(6=i) αijN

∗
j > 0. Adding an

infinitesimal ξi does not change this property and thus the species
remains extinct.
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in the whole multiple equilibria regime:

φσ2

(
1

S∗

S∗∑
i=1

(
∂N∗i
∂ξ∗i

)2
)

= 1 . (5)

Note that eq. (5) reduces to the first identity in eq. (3)
when single species response are identical, as previously
discussed. We show in Fig. 4 the numerical results ob-
tained for f (N) = 1 − N − (N − 1)2/4 confirming this
prediction: the RHS of eq. (5) is less than one in the
single equilibrium phase, it reaches one at the transi-
tion and then remains stuck to this value in the whole
multiple equilibria phase. As before, the criticality of
the spin-glass phase implies marginal stability. Indeed,
similarly to the standard LV case, the spectrum of the
stability matrix M∗ij = V ′′(N∗i )δij + αij can be shown
to be identical for large S to that of a S∗ × S∗ ma-
trix with independent identically distributed Gaussian
off-diagonal entries having the same first and second mo-
ment of αij , and independent identically distributed di-
agonal entries with the same statistics of V ′′(N∗i ). As
we show in the SI, the condition that the left edge of
the eigenvalues density touches zero for this class of ran-

dom matrices is φσ2
(

1
S∗

∑S∗

i=1

(
(M∗)−1

ii

)2)
= 1, which

using
∂N∗i
∂ξ∗i

= (M∗)−1
ii turns out to be identical to eq. (5).

Therefore we obtain that the multiple equilibria regime
is indeed generically characterized by marginal stability
and, by doing so, we derive a new generalized version
of May’s bound (eq. (5)). Remarkably, these proper-
ties hold despite the fact that for this general class of
random matrices the density of eigenvalues is no longer
a shifted semi-circle and the singularity at the left edge
is not necessarily a square root10, as shown numerically
in Fig. 1 for the f(N) = 1 − N − 3/4(N − 1)2 case
(which has f ′(N) > 0 for some values of N , correspond-
ing to an Allee effect). Note that for general f(N) the
phase diagram is modified compared to the standard LV
model. For instance for f(N) = 1−N − 3/4(N − 1)2 the
single equilibrium phase is absent even for infinitesimally
small interactions. In conclusion, our investigations show
that the class of f(N) leading to the marginally stable
multiple-equilibria phase, i.e. the phase boundaries of
the critical spin-glass phase in the physics terminology,
is quite large. Determining its boundaries is an impor-
tant and interesting task that we leave for future studies.
Based on previous results on mean-field glassy systems
[32], it is possible that the property that the multiple

10 The singularity at the edge depends on the statistics of the diag-
onal components M∗ii, i.e. of V ′′(N∗i ). It is a square root if the
distribution of the random variable V (N∗i ) approaches the left
edge of the support slower than linearly, in the other cases it may
be a square root or instead inherit the singularity of V ′′(N∗i ) at
the left edge [31].

0 0.5 1 1.5 2
0

0.5

1

1.5

2

2  <
 (

N
i/

i)2  > marginal
stability

FIG. 4. Numerical test of the identity (5) combining diversity
φ and single species response valid throughout the multiple
equilibria phase, for f (N) = 1−N −N2/4, ri = Ki = 1 and
S = 400. The fluctuations are finite S effects.

equilibria probed by the system are marginally stable is
robust, even though the detailed properties of the land-
scape might be different depending on the shape of f(N)
11. Another extension of our work worthy of future analy-
sis concerns the role of the interactions network. As long
as the connectivity C per species is large and the under-
lying structure rather homogeneous, e.g. no fat tails in
the distribution of the local connectivity, the mean-field
approach we developed is a very good approximation. In
consequence, our results are expected to hold also in this
more general setting where C � 1 but C is not necessar-
ily equal to S. As a first interesting extension one could
consider LV models on random regular graphs [33].

The properties (and the existence) of the multi-
equilibria phase continue to hold also in presence of small
noise. On the basis of previous studies on mean-field
spin-glasses [27, 28], we can state several general facts.
In presence of small noise the system moves around be-
tween multiple dynamical states. These correspond to
low temperature spin-glass states associated with the lo-
cal minima discussed above. Only the low energy min-
ima are able to trap the dynamics of the ecosystem over
long periods of time, while the ones higher in energy are
instead separated by small energy barriers; the transi-
tions between them are so frequent that their identities
as separate states disappear even for small noise. The
stability of these dynamical states can described by the
matrixMij , which is a generalization of the stability ma-

trix and is defined as the (matrix) inverse of ∂〈Ni〉
∂ξj

(〈·〉
denotes the average over the noise). As the stability ma-
trix in absence of noise, Mij is positive definite and has
arbitrary small eigenvalues for large S, thus leading to
marginal stability. Physically, this is a consequence of the

11 This is due to the fact that in many different situations, the
most numerous minima, which are the ones with the biggest
basins of attraction, are marginally stable [32]. Therefore it is
not necessary that all minima are marginally stable to find that
the ones reached dynamically are like this.
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fact that the spin-glass phase is not destroyed by small
thermal fluctuations and is critical over a finite range of
temperatures [26].
In summary, by mapping the LV models to thermal dis-
ordered systems and studying their thermodynamics, we
find that marginal stability is a property of all communi-
ties that are reached dynamically by an ecosystem in the
multiple equilibria phase. Eq. (5), combined with our
random matrix analysis, relates this property to the sin-
gle species response. This is the main result of our work:
it represents an exact statement of May’s stability bound
[20], with three notable differences: (1) it follows from
an exact analysis of the communities reached dynami-
cally rather than from a-posteriori assumptions on the
stability equations, it is thus a property of the emergent
community; (2) it is saturated, with an equality rather
than an inequality; (3) it is more general, allowing to
incorporate non-linear f (N).

Having established that marginal stability is a generic
property of the multiple equilibria phase, we now dis-
cuss some of its consequences and propose measurable
tests. The most striking effects are expected to appear
in dynamical phenomena. Again, previous results on dy-
namics of mean-field spin glasses provide useful guide-
lines [27]. In particular, starting the LV dynamics from
random initial conditions one expects slow relaxations
toward the minima and history dependence for large
S. Both phenomena are tightly linked to marginal sta-
bility which results in flat directions in configurations
space. The response to perturbations is also expected
to be very unusual: marginal stability should lead to
strong and wildly fluctuating non-linear responses [34]
and avalanches of extinctions and invasions [1] 12. Work-
ing out the relevance of this phenomena in various ecolog-
ical contexts certainly merits future research. The results
we found for symmetric interactions have also important
consequences for cases where αij are asymmetric. Indeed,
given that the multiple equilibria are marginally stable,
we expect that adding asymmetry leads immediately to
a chaotic behavior in which the system moves among the
different regions of configurations space corresponding to
the vestige of those equilibria [36–38].

Throughout this paper, we stressed that the unusual
properties of the multiple equilibria phase are related to
the criticality of the corresponding spin-glass phase. In
the following, we show that this relationship also sug-
gests new ways to test for marginal stability. Criti-
cality corresponds to a state in which the microscopic
degrees of freedom are all strongly correlated, which
naturally leads to singular responses. The properties
of the stability matrix in the multiple equilibria phase
are one facet of this phenomenon; diverging fluctuations

12 These are different from cascades in trophic systems (e.g., [35]),
as here no trophic structure is included.
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FIG. 5. We show χ4(t, t′) in the single equilibrium phase
for the standard LV model (f(N) = 1 − N , ri = Ki = 1),
σ = 0.55, S = 400 and T = 10−5. The top and bottom
dashed lines show the values of 2χSG and χSG respectively.
Inset: Analytical prediction for χ4(t, t) = 2χSG as a function
of σ approaching the transition toward the multiple equilibria
phase. χSG diverges for σ → σc.

are another. Note, however, that simple fluctuations
such as 〈N2

i 〉 − 〈Ni〉2 or its time-dependent counterpart

C(t, t′) = 〈Ni(t)Ni(t′)〉 − 〈Ni(t)〉〈Ni(t′)〉 do not capture
criticality (the overbar denotes the average across the
species). One has to focus on other kinds of correla-
tions. See SI for detailed computations on this point
and the following. As a matter of fact, in the LV model
we considered, which can be mapped onto thermal dy-
namics, diverging responses and fluctuations are exactly

related by the fluctuation-dissipation relation ∂〈Ni〉
∂ξj

=

ω−2(〈NiNj〉 − 〈Ni〉〈Nj〉). On this basis, and following
previous work on glassy systems [39], we propose to probe
criticality, or the collective nature of the equilibria and
more generally of the dynamical states by looking at a
fourth-order correlation function, called χ4(t, t′), which
reads:

χ4(t, t′) =
1

S

∑
ij

[〈δNi(t)δNi(t′)δNj(t)δNj(t′)〉−

−〈δNi(t)δNi(t′)〉〈δNj(t)δNj(t′)〉]

where δNi(t) = (Ni(t)−〈Ni(t)〉)/
√
C(t, t). This function

allows one to measure to what extent species are dynam-
ically correlated and is therefore a way to quantitatively
test criticality and marginal stability. In the LV model
and for σ < σc the dynamics becomes stationary after a
short transient. In this case χ4(t, t′) depends on t − t′
only. Its long time limit (t− t′ � 1) is equal to:

χSG =
1

S〈N2
i 〉c

2

∑
i,j

[〈NiNj〉 − 〈Ni〉〈Nj〉]2,

whereas for t = t′ and small temperatures χ4(t, t) is equal
to twice χSG. As shown in Fig. 5, where we check these
analytical predictions by numerical simulations for S =
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400, χ4(t − t′) is a decreasing13 function of t − t′. In
the condensed matter theory context χSG is known as
the spin-glass susceptibility and is known to diverge in
the entire spin-glass phase. We indeed recover this result
and connect it to marginal stability since

χSG =

(
∂〈Ni〉
∂ξi

)−2 ∫
dλ
ρ(λ)

λ2
∼ S1/3

where ρ(λ) is the density of eigenvalues of the matrix
Mij . The divergence of χSG as S1/3 comes from the fact
that the minimum eigenvalue of M scales as S−2/3 [40].
In the inset of Fig. 5 we show the behavior of χSG ob-
tained analytically in the large S limit. Note that if the
singularity of ρ(λ) is milder than a square root, as it is the
case for example for f(N) = 1−N−3/4(N−1)2, then one
needs to consider high-order moments. The bottom line
of this discussion is that if data on the time-dependence
of abundances is available, the function χ4(t, t′) allows
one to measure to what extent species dynamics are cor-
related and test directly for criticality and marginal sta-
bility. Even though in the simple LV case, measuring
χSG would be sufficient for that purpose, measuring the
time dependent four-point function χ4(t, t′) is the way to
go in order to obtain information in more general cases,
which may be neither stationary, nor related to thermal
equilibrium dynamics.

In conclusion, our analysis of Lotka-Volterra equations
in the limit of large species offers an explanation of
why many systems in Nature are poised at the edge
of stability: we have shown that when the parameters
of an ecosystem cross the limit of stability, the system
dynamically self-adapts to remain exactly marginally
stable. It does so reducing the number of species in
such a way to saturate May’s bound, which therefore
emerges as a result of a dynamical process. This leads
to a whole critical phase with multiple marginally
stable equilibria, which is expected to be present for
several different models and to display highly non trivial
dynamical behaviors. Its consequences can be relevant
and important in many fields [3, 6, 7, 41, 42].

We thank J.-F. Arnoldi, M. Barbier, J.-P. Bouchaud,
D.S. Fisher, B. Haegeman, J. Kurchan, T. Mora, V. Ros,
E. Vanden-Eijnden, P. Vivo, A. Walczak for useful dis-
cussions. This work was partially supported by the grant
from the Simons Foundation (]454935, Giulio Biroli).

13 The shape of χ4(t, t′) is different from the one found in glassy
systems. The main difference which lies in the different nature of
the degrees of freedom is that χ4(t, t) becomes large approaching
the transition, whereas in glassy systems it is featureless.
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Supporting Information (SI)

Numerics

Simulations of Eq. 1 in the main text for Figs. 1-4 were done without noise (T = 0). This results in a set of coupled
ODEs, that where run with λ = 10−18 and terminated when d (lnNi) /dt < 10−10 for all i. To calculate the spectra
in Fig. 1 and the diversity in Fig. 3, species were considered to have positive Ni if Ni > 10−14 at the final time. In
Figs. 1-4, each data point used 3000 runs, where for each one a new matrix α was sampled.
The noisy simulation in Fig. 5 was run with a simple Ito discretization of the stochastic differential equation:
∆Ni = Ai∆t +

√
Bi∆t, where Ai are the noiseless terms of dNi/dt and Bi = 2TNi. The simulation was run with

T = 10−5.

Spin glasses

Many of the theoretical methods used in this work were originally developed to study disordered systems in physics,
and in particular spin-glasses. Here we make some brief comments on such systems and how they relate to the present
problem.
The behavior described in this work requires variability in the interaction strengths αij (as measured by their standard
deviation σ). In physics, systems where interactions between the constituents exhibit analogous variations are known
as “disordered systems”. In particular, a spin glasses is systems where magnetic interactions vary between the different
pairs of atoms. Models of such systems, starting with [43], traditionally use binary variables to model the state of
each magnetic spin σ ∈ {−1, 1}, while the complex interactions were modeled as i.i.d. Gaussian random variables.
For example, the first spin glass model [43] is the Edwards and Anderson model where the Hamiltonian (the energy
of a state) is given by

HSK = −
∑
(i,j)

Ji,jσiσj ,

where only terms involving pairs of nearest neighbours (i, j) are included in the sum, and Ji,j are randomly sampled
with zero mean. The first model to be solved is its fully connected analog, the Sherrington Kirkpatrick (SK) model
where all pairs of spins are taken to interact [44, 45]. A number of other spin glass models were considered along the
years [26, 46–48]. Among the most interesting ones, we mention those where interactions involve p > 2 variables at a
time, called p-spin models [46]

Hp = −
∑

(i1,i2,...,ip)

Ji1,i2,...,ipσi1σi2 . . . σi2 .

It turned out that spin glass models show interesting new phases and phase transitions and can be classified in different
universality classes which correspond to different macroscopic behaviours.
The techniques developed for the solution of spin glasses are in general useful to describe systems with high level
of frustration [49] (i.e. absence of optimal solutions for certain instances of the couplings). For this reason they
are widely applied nowadays in different fields including condensed matter (magnetic systems, supercooled liquids),
biology (protein folding, neural networks), social sciences, economics, computer sciences (optimization theory, machine
learning).
The major obstacle that had to be tackled while dealing with the solution of spin glass models is represented by
the task of performing disorder averages of quantities of physical interest to extract information on the macroscopic
behaviour of the system. The information about equilibrium is contained in the so-called free energy of the system

F = − 1

β
log
∑
{σi}

exp[−βH]
J

,

where the overline represents the average over difference instances of the disordered couplings, the inner sum runs
over all the possible configurations of spins, and the argument of the logarithm is commonly called partition function

Z =
∑
{σi}

exp[−βH] .
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The operation of taking the average usually is reduced to perform a Gaussian integration. This would have required
little computation effort indeed had the logarithm not been on the way. Yet its presence cannot be neglected nor the
operation of taking the average simply performed on the logarithm’s argument (the last procedures is called annealed
calculation but does not lead to the correct solution in the interesting regimes). To keep the order of the operations
and yet end up with an analytically tractable problem the so-called replica trick was introduced [26]. It amounts to
use the fact that

log x = lim
n→0

log xn

n
,

which can be easily verified. Hence the free energy can be written in terms of the so called replicated partition function
Zn as

−βF = lim
n→0

logZn

n
= lim
n→0

log {
∑
{σi} exp[−βH]}n

n

where the power n can be interpreted, before the limit n→ 0 is taken, as we were focusing on n independent copies
of the same system in presence of a unique sample of random couplings. Averages over different realizations of the
disorder are in this form straightforward. The copies in the spin glass jargon are usually called replicas.
To give an intuition of the physical meaning of the results that can be obtained within replica computations we
must remember that frustrated systems are usually characterized by a multi minima structure of the energy, or any
equivalent cost function that might be of interest. This arrangement of minima is uniquely associated to any instance
of the random couplings. The role of replicas is the one of revealing the main features of this multi minima structure
by independently probing different minima. In fact one of the most important piece of information that comes out
from a replica computation is the average width of equilibrium minima and the average distance between pairs of
them, or more in general the hierarchical arrangements of minima in the space of configurations. All this is contained
in the structure of overlap Qa,b (or similarity, which accounts for the inverse of distance in the space of configurations)
between pairs of replicas a, b:

Qa,b =
1

N

N∑
i

∑
{σc

i }
exp

[
−β

n∑
c
Hc

]
σai σ

b
i

∑
{σc

i }
exp

[
−β

n∑
c
Hc

]
J

=
1

N

N∑
i

〈σai σbi 〉AR

J
,

where 〈〉AR denotes the measure over all replicas with the Boltzmann weight and after averaging over disorder (RHS
of the first equation above). Along a typical replica computation a new conceptual obstacle arises when the free
energy is rewritten in terms of an integral over all the possible choices of the overlap matrix. In the thermodynamic
limit (N →∞) the Laplace method (or saddle point method) can be applied to evaluate the integral but it requires
to find the overlap matrix that maximizes the argument of the integral. This operation requires the introduction of
a good ansatz for the overlap matrix. The currently used scheme was proposed by Parisi [50, 51] and subsequently
proved to be the one providing the correct saddle point result [52]. It is called Replica Symmetry Breaking (RSB)
scheme and will be discussed in more details in the following sections.
Depending on the number of steps of breaking of the replica symmetry required to get a meaningful solution [53]
(i.e. stable in the replica space), we could end up working with Replica Symmetric (RS) scheme, one step Replica
Symmetry Breaking (1RSB), ∞ steps Replica Symmetry Breaking (FRSB), just to mention the most relevant ones.
This differentiation allows to classify spin glass models and characterize the features of their relevant phases and
phase transition.
It turns out that the ecological model we consider in this work, at large values of σ, is characterized by a FRSB
solution. The FRSB solution represents, as stressed in the main text, a critical phase. From the technical point of
view, it is marginally stable, meaning that within the Laplace method it corresponds to an extremum with vanishing
small eigenvalues.
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Mapping to a thermal disordered system

We assume the starting equation to be

dNi
dt

=
ri
Ki
Ni

fi(Ni) + ξi −
∑
j( 6=i)

αijNj

+
√
Niηi + λi (6)

with αi,j a symmetric matrix, and ηi a white noise: 〈ηi(t)ηj(t′)〉 = 2Tδijδ(t− t′). Lotka-Volterra (LV) classical system
of equations for interacting species can be obtained by setting fi(Ni) = Ki −Ni.
By scaling the variables Ni by 〈Ki〉 = µK : Ñi = Ni/µk and consequently also the relevant parameters K̃i = Ki/µK ,

λ̃i = λi/µK , T̃ = T/µK , ξ̃i = ξi/µK , and also the function f̃i(Ñi) = fi(Ni)/µK (which is true in the LV case) we get
an identical dynamical equation in terms of the new variables and the old αij , and ri. Without loss of generality then
we set µK = 1 and forget about all the tildas.
We also prefer to define an interaction matrix θij = riαij/Ki = ραij . In doing this we assume that the ratio ρ = ri/Ki

is i-independent so that αij and θij are symmetric at the same time.
Finally we define the function V (Ni) such that −∇Ni

Vi(Ni) = ρfi(Ni) (in the LV case Vi(Ni) = −ρ(KiNi −N2
i /2)),

we set ξi = 0 and λi = λ.
The dynamical equations then read

dNi
dt

= −Ni∇Ni
Vi(Ni)−Ni

∑
j(6=i)

θijNj +
√
Niηi + λ . (7)

We want to show that this equation admits an invariant probability distribution in terms of a Hamiltonian H. To do
so we derive the corresponding Fokker-Planck equation [54]. We consider a generic observable O({Nj}) and the time
derivative of its average over the thermal noise d

dt 〈O({Nj})〉. This derivative will obtain us the time derivative of the
distribution of our variables originated by the thermal noise itself:

d

dt
〈O({Nj})〉 =

d

dt

∫ ∏
i

dNiP ({Nj}, t)O({Nj}) (8)

=

∫ ∏
i

dNi
∂

∂t
P ({Nj}, t)O({Nj}) .

Adopting the Ito convention [54], the LHS of the equation (8) corresponds to

d

dt
〈O({Nj})〉 = 〈

∑
i

∂O

∂Ni

dNi
dt
〉+

1

2
〈
∑
i,j

∂2O

∂Ni∂Nj
ηiηj

√
NiNj〉 . (9)

In the Ito prescription variables are not correlated with noise at the same time so, also using equation (7), the previous
equation becomes

d

dt
〈O({Nj})〉 = 〈

∑
i

∂O

∂Ni
D({Nj})〉+ T 〈

∑
i

∂2O

∂N2
i

Ni〉 , (10)

where

D({Nj}) = −Ni∇Ni
Vi(Ni)−Ni

∑
j(6=i)

θijNj + λ .

Re-writing now the average over the noise as an average over P ({Nj}, t)

d

dt
〈O({Nj})〉 =

∫ ∏
i

dNiP ({Nj}, t)× (11)

∑
i

(
∂O

∂Ni
D({Nj}) + T

∂2O

∂N2
i

Ni

)
,
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and integrating by parts we get

d

dt
〈O({Nj})〉 =

∫ ∏
i

dNiO({Nj})× (12)

∑
i

{
T
∂2

∂N2
i

[P ({Nj}, t)Ni]−
∂

∂Ni
[D({Nj})P ({Nj}, t)]

}
.

By comparison with equation (8) we can now write the Fokker-Planck equation as

∂

∂t
P ({Nj}, t) = (13)∑

i

{
T
∂2

∂N2
i

[P ({Nj}, t)Ni]−
∂

∂Ni
[D({Nj})P ({Nj}, t)]

}
.

The equilibrium distribution must satisfy then

0 =
∑
i

{
T
∂2

∂N2
i

[P ({Nj}, t)Ni]−
∂

∂Ni
[D({Nj})P ({Nj}, t)]

}
,

which is obtained by imposing ∀i

∂P ({Nj}, t)
∂Ni

=

[
D({Nj})

T
− 1

]
P ({Nj}, t)

Ni
. (14)

By asking that this equilibrium distribution is also of the form

P = Z−1 exp(−βH) , (15)

with Z the usual normalizing partition function, we obtain

∂P

∂Ni
= −Pβ ∂H

∂Ni
(16)

and hence that

∂H

∂Ni
= − 1

Ni
[D({Nj})− T ] (17)

so finally

H =
∑
i

Vi(Ni) +
∑
(i,j)

θijNiNj + (T − λ)
∑
i

ln(Ni) . (18)

Note that having λ > T (even when T → 0) is a fundamental element to have a regularized P ({Nj}) at small Nj .
In conclusion the original dynamical equations describe the dynamical evolution of a system whose thermodynamics
is determined by the Hamiltonian just obtained.

Replica computation

We use a replica approach to analyze the thermodynamics of the system characterized by the Hamiltonian (18).
Recall that θij are assumed to be Gaussian distributed with mean ρµ/S and variance ρ2σ2/S. We evaluate the
free-energy of the system by applying the replica trick to perform sample averages

− βF = lim
n→0

lnZn

n
. (19)

We then evaluate the replicated partition function as

Zn =

∫ ∏
i,(ij)

dNa
i dθij exp

−∑
(ij)

(θij − ρµ/S)2

2ρ2σ2/S
− βH({Ni})

V

, (20)
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where the average over the disorder contained in V remains to be done, and which, through standard replica manip-
ulations [26], becomes

− βnF = ln

∫ ∏
a,a<b

dQabdQaadHa exp [SA(Qa,b, Qa,a, Ha)]

V

(21)

with

A(Qa,b, Qa,a, Ha) = −ρ2σ2β2
∑
a<b

Q2
ab

2
− ρ2σ2β2

∑
a

Q2
aa

4

+ ρµβ
∑
a

H2
a

2
+

1

S

∑
i

lnZi (22)

In the last equation the effective on-site partition function Zi =
∫ ∏

a dN
a
i exp (−βHeff ({Na}i)) is obtained from an

effective Hamiltonian

Heff ({Na}i) = −βρ2σ2
∑
a<b

Na
i N

b
iQab − βρ2σ2

∑
a

(Na
i )2Qaa

2

+
∑
a

ρµNa
i Ha + Vi(N

a
i ) + (T − λ) logNa

i (23)

where the order parameters satisfy the self-consistent equations

Qab =
1

S

∑
i

〈Na
i N

b
i 〉AR

V
, Ha =

1

S

∑
i

〈Na
i 〉AR

V

and the averages over configurations of all replicas (AR) are performed with the effective Hamiltonian Heff .

Replica Symmetric Solution

Replica symmetry is correct when only a single equilibrium (or minimum) in the (free-)energy landscape governs
the thermodynamic behavior. Formally, one assumes:

Qab = q0 ∀a 6= b , Qaa = qD ∀a , Ha = h∀a .

The free-energy expression becomes in this case

− βnF = ln

∫
dq0dqDdh exp [SA(q0, q1, h)]

V

(24)

A(q0, q1, h) = −ρ2σ2β2n(n− 1)

4
q2
0 − ρ2σ2β2n

4
q2
D (25)

+ ρµβ
n

2
h2 +

1

S

∑
i

lnZi (26)

with an effective Hamiltonian for Zi

Heff ({Na}i) = −βρ
2σ2

2
q0

(∑
a

Na
i

)2

− βρ2σ2

2
(qD − q0)

∑
a

Na
i

2

+
∑
a

ρµhNa
i + Vi(N

a
i ) + (T − λ) logNa

i . (27)

To decouple replicas we exploit standard properties of Gaussian integrals and we get

Zi =

∫
dzi√
2π

exp

[
−z

2
i

2

] ∫ ∏
a

dNa
i exp

[
−β
∑
a

HRS(Na
i , zi)

]
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with

HRS(Ni, zi) = −ρ2σ2β(qD − q0)
N2
i

2
+
(
ρµh− ziρ

√
q0σ
)
Ni

+ Vi(Ni) + (T − λ) logNi . (28)

By maximizing the action S at the exponent of (24)

S = −n(n− 1)

4
β2ρ2σ2Sq2

0 −
n

4
β2ρ2σ2Sq2

D +
n

2
βρµSh2 +

∑
i

lnZi (29)

we get the following saddle point (SP) equations on the introduced parameters

q0 =
1

S

∑
i

〈Na
i N

b
i 〉AR

V

(30)

qD =
1

S

∑
i

〈Na
i

2〉AR

V

(31)

h =
1

S

∑
i

〈Na
i 〉AR

V

(32)

with

〈(N b)p(N c)r〉AR

V
=

=

∫
dz√
2π

∏
a dN

a exp
[
− z22 − β

∑
aHRS(Na, z)

]
(N b)p(N c)r∫

dz√
2π

∏
a dN

a exp
[
− z22 − β

∑
aHRS(Na, z)

] V

where b, c denotes replica indices and p, r, are the powers of the abundance we are considering. In the n → 0 limit
the formula above can be expressed in terms of thermal averages 〈·〉1R over single species and single replica with
Hamiltonian HRS , and the disorder average · representing the average over the disorder contained in V (N) and the
Gaussian integral over z with mean zero and unit variance

〈(Na)p(N b)r〉AR

V
= 〈Np〉1R〈Nr〉1R (33)

where

〈 · 〉1R =

∫
dN exp [−βHRS(N, z)] ·∫
dN exp [−βHRS(N, z)]

. (34)

Hence we can write

q0 = 〈N〉21R (35)

qD = 〈N2〉1R (36)

h = 〈N〉1R . (37)

The average over a single replica coincides with the standard average first over the Boltzmann weight and then over
the quenched disorder. It is possible to reduce the latter to the former because the model is mean-field. The resulting
equations have a clear interpretation: each species is subjected to its own potential V and two extra terms due to the
overall mean-field interaction with the rest of the system. Two non fluctuating terms, one quadratic and the other
linear, plus a fluctuating linear term proportional to z. The latter can make the minimum of the overall potential
zero (extinction) or larger than zero (survival).

Note that for fluctuating Ki, the LV potential is Vi(Ni) = −ρ
(
KiNi − N2

i

2

)
and the average in the 1replica compu-

tation above is performed over the Gaussian distributed Ki with mean µK = 1 and variance σK .
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Zero Temperature Limit

In the zero temperature limit q0 → qD at the same pace as T so it is useful to define the variable ∆q = ρβ(qD− q0),
where ρ has been inserted just for convenience in writing. The equations of the three parameters in this limit are
hence expressed in terms of h, q0, and ∆q.
In this limit the thermal averages over the 1replica measure are evaluated by saddle point-method at N∗, which is
the positive minimum of the Hamiltonian HRS(N) when it exists, or zero. Hence the SP equations become

q0 = N∗(z)2 , h = N∗(z) , ∆q = ρ
θ(N∗(z))

H
′′
RS(N∗(z))

.

where θ(x) is the Heaviside function, θ(x) = 1 for x > 0 and zero otherwise. Note that in the case of last equation on
∆q = 〈N2〉 − 〈N〉2 we had to Taylor expand HRS for small T separately in the case of extinction N∗ = 0 and survival
N∗ > 0.
The LV case is particularly simple since N∗ reads

N∗(z) = max

{
0,
K + zσ

√
q0 − µh

1− σ2∆q

}
. (38)

Until now K and z were two separate Gaussian variables (with averages 1 and 0 and variances σK and 1, respectively)
over which we are averaging. Combining together these two variables into z̃ with 0 average and variance 1 we get

N∗ = max

{
0,

√
σ2
K + σ2q0

1− σ2∆q
(z̃ + ∆)

}
(39)

with value of the random variable z̃ corresponding to extinction −∆ = − 1−µh√
q0σ2+σ2

K

. The expression for q0, h, and ∆q

are hence immediately obtained as being

q0 =

(√
q0σ2 + σ2

K

1− σ2∆q

)2

w2(∆) , (40)

h =

√
q0σ2 + σ2

K

1− σ2∆q
w1(∆) , (41)

and

∆q =
1

1− σ2∆q
w0(∆) , (42)

with

wi(∆) =

∫ ∞
−∆

dz̃√
2π

exp

[
− z̃

2

2

]
(z̃ + ∆)i .

These equations coincide with the one obtained by the cavity method in [24].

One step replica symmetry breaking equation

In the multiple minima phase the RS solution is unstable, as already checked in [24]. This implies the existence of
multiple equilibria. In order to characterize these equilibria one has to study what kind of RSB solution emerges.
In the following we consider the 1RSB solution: the n replica are divided into n/m groups and Qab = q1 for a 6= b
both in the same group, Qab = q0 for a, b in different groups and Qaa = qD and Ha = h. Once introduced this ansatz
the computation is similar to the RS one.
The free-energy expression is in this case

− βnF = ln

∫
dq0dq1dqDdh exp [SA(q0, q1, qD, h)]

V

(43)
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with

A(q0, q1, qD, h) = −ρ2σ2β2n

4
[(n−m)q2

0 + (m− 1)q2
1 + q2

D]

+ ρµβ
n

2
h2 +

1

S

∑
i

lnZi (44)

with an effective Hamiltonian, Heff ({Na}i), for Zi:

Heff =
∑
a

[ρµhNa
i + Vi(N

a
i ) + (T − λ) logNa

i ]− βρ
2σ2

2
×q0

(
n∑
a

Na
i

)2

+
n

m
(q1 − q0)

(
m∑
a

Na
i

)2

+ (qD − q1)
∑
a

Na
i

2

 .
To decouple replicas we exploit standard properties of Gaussian integrals and we get

Zi =

∫
dzi√
2π

exp

[
−z

2
i

2

] n/m∏
aB=1

∫ dzaBB,i√
2π

∏
a(aB)

dNa
i ×

exp

−zaBB,i2
2
− β

∑
a(aB)

H1RSB(Na
i , zi, zB,i)

 (45)

with a(aB) ∈ [(aB − 1)m+ 1, aBm] and

H1RSB ( N, z, zB) = −ρ2σ2β(qD − q1)
N2

2
+ (T − λ) logN

+ V (N) +
(
ρµh− zBρ

√
q1 − q0σ − zρ

√
q0σ
)
N . (46)

By maximizing the action A at the exponent of (43) in the n → 0 limit we get the following SP equations on the
introduced parameters

h =
1

S

∑
i

〈Na(aB)
i 〉AR

V

q0 =
1

S

∑
i

〈Na(aB)
i N

a(bB)
i 〉AR

V

q1 =
1

S

∑
i

〈Na(aB)
i N

b(aB)
i 〉AR

V

and

qD =
1

S

∑
i

〈Na(aB)
i

2
〉AR

V

with

〈N b(bB)pN c(bB)rNd(dB)s〉AR

V
=

=

∫
dµ(z, zaBB, N

a(aB)) exp

[
−β
∑
a(aB)

H
a(aB)
1RSB

]
N b(bB)pN c(bB)rNd(dB)s

∫
dµ(z, zaBB, N

a(aB)) exp

[
−β
∑
a(aB)

H
a(aB)
1RSB

]
V
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where

dµ =
dz exp

[
− z

2

2

]
√

2π

∏
aB

dzaBB exp
[
− z

aB
B

2

2

]
√

2π

∏
a(aB)

dNa(aB)

and H
a(aB)
1RSB = H1RSB(Na(aB), z, zaBB ).

These averages in the n → 0 limit can be expressed in terms of thermal averages 〈·〉1R over single species and single
replica with Hamiltonian H1RSB(N, z, zB)

〈·〉1R =

∫
dN exp [−βH1RSB(N, z, zB)] ·∫
dN exp [−βH1RSB(N, z, zB)]

,

averages 〈·〉mR over the Gaussian variable zB with additional weight given by
(∫
dN exp [−βH1RSB(N, z, zB)]

)m
〈·〉mR =

∫
dzB√

2π
exp

[
− zB

2

2

] (∫
dN exp [−βH1RSB(N, z, zB)]

)m·∫
dzB√

2π
exp

[
− zB2

2

] (∫
dN exp [−βH1RSB(N, z, zB)]

)m
and averages · V representing the average over the disorder contained in V (N) and the Gaussian integral over z with
mean zero and unit variance. Using all this we have

〈N b(bB)pN c(bB)rNd(dB)s〉AR

V
=

〈〈Np〉1R〈Nr〉1R〉mR〈〈Ns〉1R〉mR . (47)

Hence we can write

q0 = 〈〈N〉1R〉2mR (48)

q1 = 〈〈N〉21R〉mR (49)

qD = 〈〈N2〉1R〉mR (50)

h = 〈〈N〉1R〉mR . (51)

1RSB Zero Temperature Limit

Also in the case we have to considered rescaled variable in the limit T → 0: ρ(qD − q1)β = ∆q ∼ O(1), and the
scaling of the replica breaking order parameter m is such that βm remains of the order of one. Hence, in the following
we will introduce the notation βm = m̃ and keep m̃ ∼ O(1).
In this limit, similarly to the RS case, the SP equations read as follows:

q0 = 〈N∗〉2mR (52)

q1 = 〈N∗2〉mR (53)

∆q = ρ〈 θ(N∗)

H
′′
1RSB(N∗)

〉mR (54)

h = 〈N∗〉mR . (55)
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Previously though the expressions were even simpler because we had to compute averages of the kind∫
dz√
2π

exp[−z2/2]

(∫
dN exp [−βHRS(N, z)]N l

)k(∫
dN exp [−βHRS(N, z)]

)k
hence, thanks to the evaluation the integral on N by the saddle point, exp[−βHRS] in the numerator and denominator
cancel out.
In this case instead an additional weight depending on m should be considered next to the Gaussian weight on zB
which comes from exp[−βmH1RSB(N∗(z, zB), z, zB)] when N(z, zB)∗ 6= 0. For the same reason the normalization
constant is non trivial and must be evaluated.
The LV choice of V allows for simple explicit expression of the equations. In particular as in the LV RS case, we
combine the Gaussian variables z and K into z̃ and for every zB we get

N∗ = max

{
0,
σ
√
q1 − q0

1− σ2∆q
(zB + ∆(z̃))

}
(56)

with the new value of the random variable zB corresponding to extinction

−∆(z̃) = −
z̃
√
σ2
K + σ2q0 + 1− µh
σ
√
q1 − q0

.

For every given zB the additional weight involving H1RSB = H1RSB(N∗, z̃, zB) is

exp[−m̃H1RSB] = exp

[
m̃

2

ρσ2(q1 − q0)

1− σ2∆q
(zB + ∆(z̃))2

]
when N∗ is non null. Hence the normalization constant is∫

dzB√
2π

exp[−z2
B/2]

(∫
dN exp[−βH1RSB(N, z̃, zB)]

)m
=

A(z̃) +D(z̃)

with

A(z̃) =

∫ ∞
−∆(z̃)

dzB√
2π

exp

[
m̃

2

ρσ2(q1 − q0)

1− σ2∆q
(zB + ∆(z̃))2 − z2

B

2

]
and

D(z̃) =

∫ −∆(z̃)

−∞

dzB√
2π

exp

[
−z

2
B

2

]
.

With this in mind and defining

dµ(zB ; z̃) =
dzB√

2π
exp

[
−z

2
B

2
+
m̃

2

ρσ2(q1 − q0)

1− σ2∆q
(zB + ∆(z̃))2

]
we can finally write the 1RSB self consistence equations as follows

h =

∫
dz̃√
2π

exp

[
− z̃

2

2

]
B(z̃)

A(z̃) +D(z̃)

with

B(z̃) =

∫ ∞
−∆(z̃)

dµ(zB ; z̃)
σ
√
q1 − q0

1− σ2∆q
(zB + ∆(z̃)) ,

q0 =

∫
dz̃√
2π

exp[−z̃2/2]
B(z̃)2

(A(z̃) +D(z̃))2
,
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q1 =

∫
dz̃√
2π

exp[−z̃2/2]
C(z̃)

A(z̃) +D(z̃)

with

C(z̃) =

∫ ∞
−∆(z̃)

dµ(zB ; z̃)
σ2(q1 − q0)

(1− σ2∆q)2
(zB + ∆(z̃))2 ,

and

∆q = ρβ〈〈N2〉1R − 〈N〉21R〉mR (57)

=
1

1− σ2∆q

∫
dz̃√
2π

exp

[
− z̃

2

2

]
A(z̃)

A(z̃) +D(z̃)
.

Everywhere we could determine also the m̃ given by a SP equation, which satisfies the following condition

0 =m̃2(q2
1 − q2

0)
ρ2σ2

4
+

∫
dz√
2π

exp

[
−z

2

2

]
× (58)[

log(A(z) +D(z))− ρm̃(1− σ2∆q)

2

C(z)

A(z) +D(z)

]
.

What we do is instead to use m̃ as a parameter through which we can select minima of the 1RSB structure at
different energy levels. This allows to compute the number of minima with a given energy, using m̃ as a parameter
conjugated to the energy [48]. The logarithm of the number of minima divided by S is called configurational entropy.
It is proportional to the derivative of the free energy with respect to m [48]. Note that, by definition of m̃, the
configurational entropy of minima corresponding to the equilibrium in the 1RSB phase is null.
In the n→ 0 and T → 0 limit the free-energy reads

−F =
1

βn
lnZn

= S

[
−ρσ

2

4
[m̃ρ(q2

1 − q2
0) + 2q1∆q] +

ρµ

2
h2 (59)

+
1

m̃

∫
dz√
2π

exp[−z2/2] log(A(z) +D(z))

]
and the configurational entropy is

Sc = −m2 d

dm

(
1

n
lnZn

)
= m̃2(q2

1 − q2
0)
ρ2σ2

4
+

∫
dz√
2π

exp[−z2/2]× (60)[
log(A(z) +D(z))− ρm̃(1− σ2∆q)

2

C(z)

A(z) +D(z)

]
.

Instability of the 1RSB phase and marginality condition for the FRSB phase

We now study the (in)stability of the 1RSB phase and, more generally, obtain the condition for the stability of
RSB phases.
To obtain the stability condition we consider a generic k − RSB phase and study fluctuations δQab only inside the
inner blocks of the Parisi matrix. This is the so-called replicon eigenvalue and corresponds physically to fluctuations
within a state. As we shall discuss in the next section, this is directly related to the Hessian (stability matrix) around
one equilibrium. We call L the action that has to be extremized at the saddle-point and we study its Hessian with
respect to the fluctuations described above:

∂2L

∂Qab∂Qcd
= (βρσ)2δ〈ab〉,〈cd〉 (61)

− (βρσ)4
(
〈NaN bN cNd〉 − 〈NaN b〉〈N cNd〉

)
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where the average is done over the effective Hamiltonian. All replica indices belong to the same block of size m×m,
one of the inner ones. A single inner block is analogous to a replica m ×m symmetric matrix so the corresponding
Hessian matrix can be diagonalized rather easily (see Almeida and Thouless). Within the same block there are three
independent matrix elements depending whether some replica index are the same:

P = (βρσ)2 − (βρσ)4
(
〈(Na)2(N b)2〉 − 〈NaN b〉2

)

Q = −(βρσ)4
(
〈(Na)2N bN c〉 − 〈NaN b〉2

)

R = −(βρσ)4
(
〈NaN bN cNd〉 − 〈NaN b〉2

)
.

The replicon eigenvalue (see [53]) is λ = P − 2Q + R with degeneracy m(m − 1)/3. The condition for stability is
λ ≥ 0. Marginal stability corresponds to λ = 0.
To evaluate the replicon eigenvalue in the 1RSB phase we need to consider a single block aB and evaluate

〈(Na)2(N b)2〉AR
V

= 〈〈N2〉21R〉mR

〈(Na)2N bN c〉AR
V

= 〈〈N2〉1R〈N〉21R〉mR

〈NaN bN cNd〉AR
V

= 〈〈N〉41R〉mR .

Hence the replicon eigenvalue can be expressed in a more transparent way as

λ = (βσρ)2
[
1− (βσρ)2〈(〈N2〉1R − 〈N〉21R)

2〉mR

]
where the second moment of N2 within one single state (or equilibrium) appears. Using the fluctuation dissipation
relation one can rewrite the previous equation in term of single species responses:

λ = (βσρ)2

[
1− (σρ)2〈

(
∂N

∂ξ

)2

〉

]

In the FRSB phase the replicon is exactly zero, this is related to the criticality of the phase [26], thus one obtain the
equation:

(σρ)2〈
(
∂N

∂ξ

)2

〉 = 1

which encodes the marginality condition at finite temperature. In the small T limit this computation is analogous to
the one performed for ∆q. At the end one gets the simpler expression

(σρ)2〈θ(N∗)
(

1

H
′′
1RSB(N∗)

)2

〉mR = 1 .

or its equivalent expression in terms of single species response

(σρ)2〈θ(N∗)
(
∂N

∂ξ

)2

〉mR = 1 .

which leads to eq. (5) of the main text. For the usual Lotka-Volterra case in which V (N) is quadratic one gets
H
′′

1RSB(N∗) = ρ(1 − σ2∆q) which does not depend on N∗. Thus the replicon eigenvalue and consequently the
marginality condition is particularly simple:

〈θ(N∗)〉mR
σ2

(1− σ2∆q)2
= 1
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As spotted earlier, the expression of ∆q in terms of correlation function is very similar. In the LV case the similarity
becomes even closer:

∆q = ρβ〈〈N2〉1R − 〈N〉21R〉mR

= ρ〈θ(N∗) 1

H
′′
1RSB(N∗)

〉mR (62)

= 〈θ(N∗)〉mR
1

(1− σ2∆q)
.

Using together the equation on ∆q and the marginality condition one finds two simpler appealing expressions:

φσ2 =
1

4
σ2∆q =

1

2

where φ = 〈θ(N∗)〉. The first equation is the the limit of stability given by the May Bound: the fraction of surviving
species in any equilibrium should be such that the Wigner semi-circle touches zero. The second is a general result
valid in the marginal phase. These analytical predictions have been tested in Fig.2 and Fig.3 of the main text.

Phase diagram and numerical solution of the mean-field equations

The replica symmetric phase was already studied in [24]. Our results agree with the previous one. In particular we
find three phases, see Fig. 6. By increasing σ for µ > 0 the single equilibrium phase becomes unstable toward the
multiple equilibria (spin-glass) phase when its replicon eigenvalue vanishes. The instability toward the unbounded
growth phase is signalled by a concomitant divergence of 〈N〉 and 〈N2〉 − 〈N〉2. Note that the transition line to the

0 2 4 6
0

0.5

1

1.5

single equilibrium

diverging
solutions multiple equilibria

FIG. 6. Phase Diagram obtained analytically from the mean-field equations.

unbounded growth phase was determined within the RS ansatz so it is only an approximation for µ > 0. We have
checked by numerical simulations that it is actually a good approximation.
Crossing the transition toward the multiple equilibria phase one finds that the RS phase becomes unstable and one
has to break replica symmetry. We have found that also the 1RSB solution is unstable even though much less than
the RS one, see Fig. 7 where the replicon eigenvalue is plotted for the RS and the 1RSB phases for the standard LV
model with ri = Ki = 1 for µ = 2 as a function of σ. We didn’t look for 2RSB solutions and directly assumed that
the stable phase if the FRSB one as found generically in spin-glass models [26]. We validated this assumption by
comparison with numerical simulations that show marginal stability in the multiple equilibria phase, a property valid
only for the FRSB phase.
Note that, although unstable, the 1RSB provides a very good approximation as we have checked by comparison with

numerical simulations. For example, in Fig. 8 and 9 we show
∂N∗i
∂ξ∗i

= 1
1−σ2∆q and φσ2 for the standard LV model

with ri = Ki = 1 for µ = 2. These two quantities have respectively to stick to the values 2 and 1/4 as discussed in
the main text and found by numerical simulations. As shown the 1RSB is already a very good approximation of the
correct results, corresponding to the FRSB phase. We have also computed the configurational entropy. Given that
the 1RSB is unstable, we cannot determine even approximatively the most numerous equilibria [26]. The values we
found for the configurational entropy as a function of energy within the 1RSB ansatz for the standard LV model with
ri = Ki = 1 for µ = 2 and σ = 0.88 are very small, in the range 10−3 − 10−4. It would be interesting (but also quite
involved) to obtain the correct result within a FRSB computation. Anyhow, it is important to keep in mind that the
number of equilibria in realistic situations can be modest depending on the value of the configurational entropy and
the total number of species.
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FIG. 7. Replicon eigenvalue plotted for the RS and the 1RSB phases for µ = 2 as a function of σ. The 1RSB eigenvalue
corresponds to the topmost points for σ > σc = 1/

√
2 ' 0.707.
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dN dξ

FIG. 8. Single species response as a function of σ for the standard LV model with ri = Ki = 1 for µ = 2 from the RS and
1RSB solution. The 1RSB result corresponds to the bottom points for σ > σc = 1/

√
2 ' 0.707. The correct FRSB result is

∂N∗i
∂ξ∗i

= 2 for σ > σc.
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FIG. 9. φσ2 as a function of σ for the standard LV model with ri = Ki = 1 for µ = 2 from the RS and 1RSB solution. For
σ > σc both phases are unstable but the 1RSB result is very close to the correct one corresponding to φσ2 = 1/4.

Random Matrix Analysis

As explained in the text, the stability of a given equilibrium is governed by the S∗×S∗ stability matrix M∗ij which

is defined by the equation (M∗)−1
ij =

∂N∗i
∂ξ∗j

and reads

M∗ij = V ′′(N∗i )δij + αij (63)
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In order to study its spectral properties we focus on the resolvent, defined as G(λ) = (S∗)−1Tr(λ1 − M∗)−1 and
add an infinitesimal negative imaginary part to λ. Following exactly the same procedure developed for mean-field
spin-glasses in [55], one can construct a perturbative expansion in αij , sum the leading contributions for S →∞ and
obtain the equation: (

1

λ1−M∗

)
ii

=
1

λ− V ′′(N∗i )− σ2φG(λ)
(64)

valid only for indices corresponding to surviving species. By summing over the surviving species one finds

G(λ) = 〈 1

λ− V ′′(N∗i )− σ2φG(λ)
〉 (65)

where the average is over the distribution of the V ′′(N∗i )s. This equation allows one to study the density of eigenvalues
ρ(λ) of M∗ thanks to the relation ImG(λ) = πρ(λ). Since eqs. (64,65) are also the equations satisfied by the resolvent
of a random matrix M̃∗ with independent identically distributed Gaussian off-diagonal entries having the same first
and second moment of αij , and independent identically distributed diagonal entries with the same statistics of V ′′(N∗i ),

we conclude that M∗ and M̃∗ are equivalent as far as the average spectrum is concerned (a relation that we checked
explicitly by numerics). A marginally stable equilibrium is characterized by arbitrary small eigenvalues of its stability
matrix, i.e. it is such the left edge of the support of ρ(λ) is zero. This implies that ImG(λ) becomes arbitrary small
for λ→ 0. In consequence, close to λ = 0, we can develop the self-consistent equation on the resolvent as:

ImG(λ) = σ2φ〈
(

1

λ−V′′(N∗i )− σ2φRG(λ)

)2

〉ImG(λ)−

−(σ2φ)3〈
(

1

λ− V ′′(N∗i )− σ2φRG(λ)

)4

〉 (ImG(λ))
3

+ · · ·

The condition for having a non-zero imaginary part is that when collecting all terms on the RHS the coefficient on
the linear term in ImG is positive for λ > 0 and vanishes at λ = 014. This leads to the equation

1 = σ2φ〈
(

1

V ′′(N∗i ) + σ2φRG(λ)

)2

〉

Using relation (64), and replacing
(

1
V ′′(N∗i )+σ2φRG(λ)

)
by (M∗)−1

ii in the identity above, we obtain the equation for

marginal stability quoted in the text:

φσ2

(
1

S∗

S∗∑
i=1

(
(M∗)−1

ii

)2)
= 1

Dynamical four-point correlation function χ4(t, t′)

In the following we derive the analytical results quoted in the main text on χ4(t, t′) in the limit of small noise.
First, we define the S∗ × S∗ matrix A as

A ≡ (α∗)
−1

Let’s call also N∗i the abundance of the surviving species in the limit of zero noise. For small noise their abundances
have fluctuations of the order

√
T around the zero-noise value, whereas instead abundances of species with N∗i = 0

14 Given the type of random matrix we are focusing on, we do
not expect any isolated eigenvalue popping out of the spectrum.

Therefore, the condition for marginal stability can be obtained
from the bulk density of eigenvalues.
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have fluctuations of the order T . For small noise and at leading order, one can do a quadratic approximation of the
Hamiltonian and find for the surviving species:

〈δNi (t) δNj (t)〉 = TAij

where

δNi (t) = Ni (t)−N∗i .

The definitions of C(t, t′) and χ4 read

C (t, t′) =

〈
1

S

∑
i

δNi (t) δNi (t′)

〉

χ4 (t, t′) =
S

C(t, t)2

〈(
1

S

∑
i

δNi (t) δNi (t′)

)2〉
− S

[
C (t, t′)

C(t, t)

]2

The correlation at equal time is related (for small noise) to α∗ via

C (t, t) =

〈
1

S

∑
i

δNi (t) δNi (t′)

〉
=
T

S
Tr [A] (66)

Note that the species characterized by zero abundance in the zero noise limit do not contribute at leading order in T
since they would give a contribution O(T 2). At long times the correlation function vanishes

C (t→∞, t′) = 0

This also happens for the correlation between different species:

〈δNi (t) δNj (t′)〉 = 0 .

so

χ4 (t, t′) =

(
1

T
S Tr [A]

)2〈
S

(
1

S

∑
i

δNi (t) δNi (t′)

)2〉
t→∞

=

=

(
1

T
S Tr [A]

)2
1

S

∑
i,j

〈δNi (t) δNj (t)〉 〈δNi (t′) δNj (t′)〉

=
S

(Tr [A])
2

S∗∑
i,j=1

A2
ij =

S

(Tr [A])
2

∑
i

[
A2
]
ii

=
STr

[
A2
]

(Tr [A])
2

while for t = t′ repeating an analogous computation one finds

χ4 (t, t) =
2STr

[
A2
]

(Tr [A])
2 = 2χ4 (t→∞, t′)

The trace can be related to the spectrum via

1

S∗
Tr [An] =

1

S∗
Tr
[
(α∗)

−n
]

=

∫
dλ
ρ (λ)

λn

For a semi-circle of radius a centered at b,

ρ (λ) =
2

πa

√
1− (λ− b)2

a2
,
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this gives

1

S
Tr
[
(α∗)

−2
]

= φ

∫
dλ
ρ (λ)

λ2
=

2φ

a2

(
b√

b2 − a2
− 1

)
.

And for the correlations

1

S
Tr
[
(α∗)

−1
]

= φ

∫
dλ
ρ (λ)

λ
=

2φ

a2

(
b−

√
b2 − a2

)
In the standard LV parameterization, the center is at b = 1 and a = 2σ

√
φ, so one finds

C (t, t)

T
=

1

S
Tr [A] =

1

2σ2

(
1−

√
1− 4φσ2

)
and

χ4 (t, t) = 2

1√
1−4φσ2

− 1

1−
√

1− 4φσ2
, χ4 (t→∞, t′) =

1

2
χ4 (t, t)

As discussed in the main text and shown in Fig.5, C(t, t) is featureless at the transition while χ4(t, t) diverges.
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