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ABSTRACT
Simple parameter-free analytic bias functions for the two-point correlation of densities in
spheres at large separation are presented. These bias functions generalize the so-called
Kaiser bias to the mildly non-linear regime for arbitrary density contrasts asb(� ) � b(1) /
(1 � � � 13=21)� 1+ n= 3 with b(1) = � 4=21 � n=3 for a power-law initial spectrum with in-
dexn . The derivation is carried out in the context of large deviation statistics while relying
on the spherical collapse model. A logarithmic transformation provides a saddle approxima-
tion which is valid for the whole range of densities and shown to be accurate against the 30
Gpc cube state-of-the-art Horizon Run 4 simulation. Special con�gurations of two concentric
spheres that allow to identify peaks are employed to obtain the conditional bias and a proxy
to BBKS extrema correlation functions. These analytic bias functions should be used jointly
with extended perturbation theory to predict two-point clustering statistics as they capture the
non-linear regime of structure formation at the percent level down to scales of about10Mpc=h
at redshift0. Conversely, the joint statistics also provide us with optimal dark matter two-point
correlation estimates which can be applied either universally to all spheres or to a restricted
set of biased (over- or underdense) pairs. Based on a simple �ducial survey, this estimator
is shown to perform �ve times better than usual two-point function estimators. Extracting
more information from correlations of different types of objects should prove essential in the
context of upcoming surveys like Euclid, DESI, PFS or LSST.

Key words: cosmology: theory — large-scale structure of Universe — methods: analytical,
numerical

1 INTRODUCTION

The large-scale structure of the Universe puts very tight constraints
on cosmological models. Deep spectroscopic surveys, like Euclid
(Laureijs et al. 2011), DESI (Levi et al. 2013), PFS (Takada et al.
2014) or LSST (LSST Science Collaboration et al. 2009), will al-
low astronomers to study the details of structure formation at dif-
ferent epochs, hence to probe cosmic acceleration. Yet, in order
to reach the expected precision on the equation of state of dark
energy, astronomers must address the following challenges: non-
linear gravitational evolution (Bernardeau et al. 2002), redshift
space distortions (Kaiser 1987; Taruya et al. 2010), bias (Kaiser
1984; Dekel & Rees 1987), intrinsic alignments (Kiessling et al.
2015) and baryonic physics (Schneider & Teyssier 2015).

In this context, two-point clustering has generated a lot of in-

terest (e.g. Cooray & Sheth 2002, and references therein), as it al-
lows one to investigate how the densest regions of space – where
dark halos usually reside – are clustered, which in turn sheds light
on the so-called biasing between dark matter and halos: as halos
correspond to peaks of the density �eld, they are not a fair tracer of
that �eld. Kaiser (1984) showed that in the high contrast,�=� � 1,
large separation limit, the correlation function,� >�=� , of peaks ly-
ing above this threshold reads

� >�=� �
1

� 2

�
�
�

� 2

�; (1)

so that the correlation function of high density regions decreases
more slowly than the density �eld correlation function,� , with an
ampli�cation factor or bias that is proportional to the threshold
squared. This analysis can also be restricted to the peaks of the
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density �eld above a given threshold following the seminal papers
by Bardeen et al. (1986) (hereafter BBKS) and Regos & Szalay
(1995). For two point functions, the non-linear regime increases the
number of modes used to better constrain cosmological parameters.
Of particular (partially theoretically unexplored) interest is the pos-
sibility of computing conditional two-point correlations, e.g. two-
point correlation between regions that have speci�c densities, so
as to provide more robust estimates of the large-distance two-point
correlation.

It has been argued (Bernardeau et al. 2014, 2015; Uhlemann
et al. 2016; Codis et al. 2016) that the statistics of cosmic densi-
ties in concentric spheres can leverage cosmic parameters compet-
itively, as the corresponding spherical symmetry allows for ana-
lytical predictions in the mildly non-linear regime, beyond what is
commonly achievable via other statistics in the context of pertur-
bation theory. Indeed, the zero variance limit of the cumulant gen-
erating functions yields estimates of the joint density probability
distribution function (PDF hereafter) which seems to match simu-
lations in the regime of variances of order unity (Balian & Scha-
effer 1989; Bernardeau 1992; Juszkiewicz et al. 1993; Valageas
2002; Bernardeau et al. 2014, 2015). This success was shown to
originate from a regime of large deviations at play in the mildly
non-linear evolution of the large-scale structure (Bernardeau & Re-
imberg 2015).

The aim of this paper is to show that the spherically-symmetric
framework which led to surprisingly accurate predictions for one-
point statistics also accommodates, in the large separation limit,
analytic estimates of the two-point statistics and in particular of
the bias factor associated with imposed constraints within concen-
tric cosmic densities. Recently, Codis et al. (2016a) studied the
two-point statistics of the density within concentric spheres, whose
redshift evolution was shown to be accurately predicted by large-
deviations theory in the mildly non-linear regime, but relied on nu-
merical integration of highly oscillating complex functions and was
therefore subject to possibly signi�cant numerical errors, in partic-
ular for large densities. Since Uhlemann et al. (2016) showed that
very accurate analytic approximations could be found for one-point
statistics by using a logarithmic transform of the density �eld and
performing a saddle-point approximation, we propose in this paper
to extend the use of the logarithmic transform to two-point statis-
tics.

It was shown in Codis et al. (2016b) that the one-point PDF
can be fully predicted, modulo one parameter, the variance of the
density �eld, which is the driving parameter of the theory, leading
to two options: i) higher order perturbation theory can be used to
predict the value of this variance as a function of scale and redshift
in order to recover the full PDF or ii) this one parameter model
can be used to build optimal likelihood estimators for the variance
based on the measurement of densities in spheres. Conversely, in
the present paper, modulo the unknown underlying two-point cor-
relation function of the dark matter density �eld, we will show that
the same large-deviations formalism provides us with the full statis-
tics of the two-point PDF of the density within concentric spheres
separated by a distancer e. Once again, one can i) rely on perturba-
tion theory to predict the underlying dark matter correlation func-
tion (e.g. Taruya et al. 2012), or ii) build, from the present theory,
optimal estimators for the dark matter correlation function to be
applied to measured density in separated spheres.

In this paper, following Bernardeau (1996), the focus will be
on predicting analytically the density two-point statistics for con-
�gurations shown in Figure 1 and speci�cally the corresponding
bias functions (the aforementioned density-dependent scalings of

re

R1
R2

! J,1

! J,2

R1

R2

! I,1

! I,2

Tuesday, 28June, 16

Figure 1.The two-point con�guration with two concentric cells of radiiR1

andR2 in one location (purple) and two other concentric cells of radiiR1

andR2 in another location (red) separated by a distancer e � R2 .

the two-point correlation). We will in particular consider the den-
sity �eld smoothed at two different scales in two concentric spheres
which can be turned into an inner density and a slope (difference
of density between the two spheres). This will allow us to focus
on the conditional density-given-slope bias as a quasi-linear proxy
for the BBKS peak correlation function. These bias functions gen-
eralize the so-called Kaiser linear bias in the mildly non-linear
regime for large separations and arbitrary density contrasts. Hence
they provide alternative ways of using gravitational clustering to
probe our cosmological model, in particular using speci�c regions
of space (underdense/overdense, small/big slope, etc). Leveraging
conditionals on the value of the density at the legs of the correla-
tions will allow for a more robust estimate of the two-point corre-
lation function. We will illustrate on a �ducial experiment how the
present formalism can be used to estimate optimally the underlying
top-hat �ltered correlation function.

This paper is organized as follows. Section 2 presents brie�y
the implementation of a large deviation principle on the joint statis-
tics of concentric cells based on a saddle point approximation. Sec-
tion 3 compares these analytic predictions to the state-of-the-art
dark matter simulation Horizon Run 4 (HR4). Section 4 demon-
strates how to measure optimally the dark matter correlation func-
tion on a given survey. Finally, Section 5 wraps up. Appendix A
shortly describes the accompanying packageLSSFast for the
evaluation of the one-cell PDF and the bias functions. Appendix B
reviews the formalism of large deviations relevant to obtain the den-
sity PDF for concentric spheres and the joint PDF at large separa-
tions. Appendix C provides a description of bias functions in the
Gaussian and weakly non-Gaussian regime based on perturbation
theory. Appendix D provides a validation of HR4 at redshiftz = 4
together with extended results for redshiftz = 0 .

2 LARGE DEVIATIONS AND SEPARATION

Appendix B presents rapidly the general formalism for deriving the
PDF and the bias functions from the large deviation principle. Let
us in the main text focus on presenting directly the corresponding
fully analytical predictions, relying on the so-called saddle point
approximation. For that purpose, we shall see that all that is needed
is the so-called decay-rate function (controlling the exponential de-
cay of the probablity distribution with the density at leading or-
der), the key quantity that connects the (Gaussian) initial to the
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Non-linear two-point statistics of cosmic densities3

non-Gaussian �nal distribution brought about by non-linear gravi-
tational clustering.

In this section we will determine the PDF of densities indis-
tant spheresbased on large deviation statistics and the saddle point
approximation. This approximation has proven successful already
to predict the one- and two-cell PDF for densities inconcentric
spheresin Uhlemann et al. (2016). After introducing the two-point
PDF and the bias functions in Section 2.1 and the spherical col-
lapse model as the mapping for large deviation statistics in Sec-
tion 2.2, we shortly review results for the one-point PDF in Sec-
tion 2.3 and �nally extend them to the two-point PDF of densities
at large separations, hence the bias functions in Section 2.4.1 The
joint knowledge of the PDF and the bias functions enables us to
compute constrained bias functions which are of particular interest
for the clustering of over- and underdense regions.

2.1 De�nition of the bias functions

Let us consider two sets ofN concentric spheres separated by
a distancer e and de�ne the corresponding densitiesf � k g16 k 6 N

and f � 0
k g16 k 6 N . Following Bernardeau (1996) and Codis et al.

(2016a), the joint PDF of these densities,P (f � k g; f � 0
k g; r e), can

be predicted from the one-point PDFsP(f � k g), P (f � 0
k g) and the

correlation function of densities in spheres at �nite separation

P(f � k g; f � 0
k g; r e) = P(f � k g)P(f � 0

k g)
�
1 + � � (f � k g; f � 0

k g; r e)
�

(2a)
where the sphere correlation function,� � (f � k g; f � 0

k g; r e), at large
separationsr e � Rk can be related to the underlying (unbiased)
top-hat smoothed dark matter two-point correlation function� (r e)
via the effective bias functionsb(f � k g) andb(f � 0

k g):

� � (f � k g; f � 0
k g; r e) = � (r e)b(f � k g)b(f � 0

k g) : (2b)

This is the count-in-cell analog of the so-called peak background
split and de�nes the bias factorb(f �̂ k g). Physically, this bias en-
codes the mean density in a sphere given that the densities in
spheres of radiif Rk g at large separationr e aref �̂ k g

1 + b(f �̂ k g)� (r e) = h� 0jf �̂ k g ; r e i ; (3)

=

R1
0 d� 0P(f �̂ k g; � 0; r e)� 0

P(f �̂ k g)
;

which follows from (2a) by integration and normalization of the
PDFs. In the following, we will describe how this bias function,
and hence the joint density PDF at large separation can be predicted
analytically.

2.2 Large deviation statistics with spherical collapse

When considering a highly symmetric observable such as the
density in spheres, one can argue that the most likely dynamics
(amongst all possible mappings between the initial and �nal den-
sity �eld) is the one respecting the symmetry (Valageas 2002).2

1 Note that, by constructing PDFs for densities in a larger number of con-
centric spheres in special con�gurations, such as three spheres, with a cen-
tral density within the inner sphere and a second density within a given
outer shell, one could build correlators for arbitrary separation. This will be
the topic of upcoming investigations.
2 This is a result of the so-called contraction principle in the context of
large deviation theory as explained in Bernardeau & Reimberg (2015),
which formalizes the idea that amongst all unlikely fates (in the tail of the
PDF) the least unlikely one (spherical collapse) dominates.

For spherical symmetry, one can then take advantage of the fact
that non-linear solutions to the gravitational dynamics are known
explicitly in terms of the spherical collapse model.

Let us denote� SC (� ) the non-linear transform of an initial
�uctuation with linear density contrast,� , in a sphere of radiusr ,
to the �nal density� (in units of the average density) in a sphere of
radiusR according to the spherical collapse model

� = � SC (� ) ; with �R 3 = r 3 ; (4)

where the initial and �nal radii are connected through mass conser-
vation. An explicit possible �t for� SC (� ) is given by

� SC (� ) = (1 � �=� ) � � ; (5)

where� can be adjusted to the actual values of the cosmological
parameters (� = 21=13 provides a good description of the spheri-
cal dynamics for an Einstein-de Sitter background for the range of
� values of interest).

Thanks to this analytic spherical collapse model, the one-point
PDF and bias functions of cosmic densities in concentric spheres,
brought about by non-linear gravitational evolution, can be pre-
dicted explicitly from the given (Gaussian) initial conditions.

2.3 The density PDF in the large deviation regime

2.3.1 PDF and decay-rate function for an initial Gaussian �eld

The principles of large deviation statistics yields a formula for the
PDF of �nding a certain density in a sphere given the initial con-
ditions. The decay-rate function encodes the exponential decay of
the PDF. For Gaussian initial conditions, which we assume here,

P ini
f r k g (f � k g) =

vu
u
t det

"
@2 	 ini

f r k g

@�i @�j

#
exp

�
� 	 ini

f r k g (f � k g)
�

(2� )N= 2
; (6)

the initial decay-rate function is given by the usual quadratic form
in the initial density contrasts� k

	 ini
f r k g (f � k g) =

1
2

X

i;j

� ij (f r k g) � i � j ; (7)

where� ij is the inverse of the initial covariance matrix,� 2
ij =

� 2(R i ; R j ), encoding all dependency with respect to the initial
power spectrum according to

� 2
ij =

Z
d3k

(2� )3
P lin (k)W3D (kR i )W3D (kR j ) ; (8)

whereW3D is the Fourier transform of the top-hat �lter

W3D (k) =
3
k2

(sin(k)=k � cos(k)) : (9)

Note that equation (6) is an unusual rewrite of a Gaussian distribu-
tion, emphasizing the central role of the rate function (7). This rate
function has a straightforward explicit expression in terms of the
underlying covariances hence the initial power spectrum.

2.3.2 Saddle-point PDF for an evolved non-Gaussian �eld

The �nal decay-rate function is obtained from re-expressing the
initial decay-rate function in terms of the �nal densities

	 f R k g (f � k g) =
1
2

X

i;j

� ij (f Rk � 1=3
k g) � i (� i )� j (� j ) ; (10)
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using the spherical collapse mapping characterized by equation (5).
The previously known result for the PDF of densities in concentric
spheresP(f � k g) at one point is given by

Pf R k g (f � k g) =

s

det
�

@2 	 f R k g

@�i @�j

�
exp

�
� 	 f R k g (f � k g)

�

(2� )N= 2
; (11)

where	 is given by equation (10). The saddle point approximation
provides a very good approximation to the exact result from large-
deviations statistics, as discussed in Appendix B, if the �nal decay-
rate function is convex, i.e.

det
�

@2 	 f R k g

@�i @�j

�
> 0 ;

which simpli�es to 	 00
R [� ] > 0 for the one-cell case. However,

as has been shown in Bernardeau et al. (2014), this condition is
only ful�lled below a critical value� c where	 00

R [� c ] = 0 in the
one-cell case, and similarly inside aN � 1 manifold for theN -
cell case. The main point of Uhlemann et al. (2016) is that this
dif�culty can be alleviated with an adequate change of variables
such as the logarithmic density transform. The procedure is then
to apply the saddle-point approximation to predict the PDF of the
(logarithmically) mapped density �eld as

P�; f R k g (f � k g) =

s

det
�

@2 	 f R k g

@�i @�j

�
exp

�
� 	 f R k g

�

(2� )N= 2
; (12a)

where the transformationf � k g ! f � k g has to be chosen to en-
sure the convexity of the decay-rate function. This result can then
easily be translated in the PDF of the density �eld via a change of
variables

Pf R k g (f � k g) = P�; f R k g [f � k (f � i g)g]

�
�
�
�det

�
@�i
@�j

� �
�
�
� ; (12b)

where the Hessian of the decay rate function	 f R k g after a change
of variablesf � k g ! f � k g is trivially given by

@2 	 f R k g

@�i @�j
=

@�k
@�i

�
@2 	 f R k g

@�k @�l
�

@�l
@�j

+
@2 � k

@�i @�j
�

@	 f R k g

@�k
:

2.3.3 Ensuring normalization

Equation (12) assumes that the mean of� j does not depend on
the variance and vanishes. For a generic non-linear mapping, it
will translate into a mean density which can deviate from one as�
grows. In order to avoid this effect, one has to consider the shifted
PDF

P̂�; f R k g (f � k g) = P�; f R k g (f ~� k = � k � h � k ig ) ; (12c)

with the shiftsh� k i chosen such that the resulting mean densities
are oneh� i i = 1 8i = 1 ; � � � ; n. Furthermore, since the saddle-
point method yields only an approximation to the exact PDF, the
PDF obtained from equation (12) is not necessarily properly nor-
malized. In practice, this can be accounted for by considering

P̂R (f � k g) = PR (f � k g)=h1i ; (12d)

with the shorthand notationh1i =
Q

k

R1
0 d� k PR (f � k g).

2.4 The bias functions at large separations

The saddle point approximation applies also to the joint density
PDF at large separation and hence the bias function de�ned in equa-
tion (3). Since initially, the �eld is Gaussian, the initial bias func-
tion is exactly given by the so-called Kaiser linear bias as described

in section 2.4.1. The subsequent quasi-linear evolution can then be
predicted by the large-deviations principle as will be shown in sec-
tion 2.4.2.

2.4.1 Kaiser bias for an initial Gaussian �eld

Let us consider a set of density contrastsf � k g in concentric spheres
of radii Rk and the contrast� 0

1 in a sphere of radiusR1 at a distance
r e away from the center of the concentric spheres. If the density
�eld is Gaussian, the covariance matrix of(f � k g; � 0

1) simply reads

C =
�

� 2
ij � i 1

� 1j � 2
11

�
; (13)

where we use the short hand notation� 2
ij = � 2(R i ; R j ) and� ij =

� (R i ; R j ; r e) with

� ij =
Z

d3k
(2� )3

P lin (k)W3D (kR i )W3D (kR j ) exp({kr e cos� ) :

In the Gaussian case the bias function can be computed analytically,
for example by diagonalizing the covariance matrix by a change
of variables as shown in Appendix C. The result for the one-cell
density bias is

bG (� ) =
h� 0

1 j� i
� 11

=
�

� 2
11

; (14)

which is proportional to the initial overdensity� as expected from
(Kaiser 1984). TheN -cell density bias follows as

bini (f � k g) =
NX

i;j =1

� ij (r i ; r j )� i =
NX

j =1

@	 ini
f r k g (f � k g)

@�j
; (15)

if we assume that for large separationsr e � Rk the cross-
correlations are all approximately identical� 1i � � 11 8i . In gen-
eral, the Kaiser bias function is given in terms of the derivative
of the decay-rate function of the initial PDF	 f r k g (f � k g) =
� log Pf r k g (f � k g) and hence the rate of decay of the PDF. This
encodes the idea that unlikely con�gurations, corresponding to
strongly positive or negative values of the initial density contrast
� are more biased.

2.4.2 Saddle-point bias for an evolved non-Gaussian �eld

The saddle point approximation of the bias function amounts to
mapping the initial Kaiser bias function, equation (15), using the
inverse spherical collapse dynamics from equation (5)

b(f � k g) =
nX

i;j =1

� ij (R i �
1=3
i ; R j � 1=3

j )� i (� i ) : (16)

The spherical collapse can be shown to be the leading order contri-
bution for the statistics of densities in distant sphere, as was done
for the one-point PDF3 . This saddle point approximation is valid in
the large separation regime and as long as the PDF of the density
can be obtained via a saddle point approximation. In as much as the
logarithmic transform signi�cantly increases the region of applica-
bility of the saddle point approximation for the PDF, it also yields
analytical bias functions. Using this saddle point approximation we

3 More precisely, the analytical asymptote of the bias function can be de-
rived using a steepest descent method in equations (B4) and (B9), see Ap-
pendix B
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Non-linear two-point statistics of cosmic densities5

therefore extend the results of Codis et al. (2016b) and present ana-
lytical predictions that do not require a numerical integration in the
complex plane; we also provide predictions for the joint and con-
strained biases based on analytical predictions of 2-cell quantities
which were not easily accessible before.

2.4.3 Ensuring normalization

Because of the normalisation of the density and joint density PDFs
and the de�nition of the sphere correlation function, the bias func-
tion must obey the following two relations

hb(f � k g)i =
Y

k

Z 1

0
d� k P̂ (f � k g) b(f � k g) = 0 ; (17)

h� i b(f � k g)i =
Y

k

Z 1

0
d� k P̂ (f � k g) b(f � k g)� i = 1 ; 8i = 1 ; :::; n :

Because of these properties the bias functionb(f � k g) obtained
from equation (16) still have to be normalized according to

b̂(f � k g) =
b(f � k g) � h b(f � k g)i

1
n

P n
i =1 (h� i b(f � k g)i � h b(f � k g)i )

: (18)

This normalization procedure is necessary and can be understood
easily: while the conditions (18) are trivially ful�lled for a purely
Gaussian initial �eld with small variance and Kaiser bias (15), the
bias will pick up corrections from non-Gaussianity via gravitational
collapse. Those corrections modify the value of the bias at average
density (and hence the mean bias and mean density-weighted bias)
and become manifest already in the very mildly non-Gaussian (and
hence perturbative) regime as shown in Appendix C. Those non-
Gaussian corrections that affect the mean are not accounted for in
the saddle point approximation used in this work. To correct for this
effect, we choose to shift the non-perturbative result from spherical
collapse dynamics at the end according to the nonzero mean bias
and will show that it leads to accurate predictions that are robust
to variances of order one. Furthermore, extrapolating the saddle
point approximation to �nite variances requires to adjust the ab-
solute normalization connected to the mean density-weighted bias.

3 VALIDATION WITH THE HR4 SIMULATION

Let us now evaluate the simple analytical predictions for the den-
sity PDF in concentric spheres, equation (11), together with the bias
functions at large separations, equation (16), and compare them to
measurements in the HR4 simulation presented in Section 3.1. The
estimators for the measurements of the bias functions are described
in Section 3.2 while the parametrization for the correlation function
is given in Section 3.3. For brevity, we will focus our comparison in
the main text to redshiftz = 0 :7, which is in the redshift range that
is most interesting to current surveys, while results forz = 0 and a
validation at high redshiftz = 4 are shown in Appendix D. We will
validate our analytical results in Section 3.4 against the HR4 mea-
surements, then present conditional bias function in Section 3.5 and
discuss the modulation of the matter correlation function induced
by biasing in Section 3.6.

3.1 The Horizon-Run 4 simulation

The Horizon Run 4 (HR4) simulation (Kim et al. 2015) is a state-
of-the-art dark matter simulation modelling gravitational clustering

Figure 2. A thin (1.5 Mpc=h) slice through the HR4 simulation at redshift
0. The simulation is 3150 Mpc=h across sampled by63003 dark matter
particles.

in a Hubble-like volume. It was run on the Tachyon-2 system at Ko-
rea Institute of Science and Technology Information to study of the
nonlinear matter evolution usingNp = 63003 particles in a cu-
bic box with a side length of 3150h� 1Mpc. The particle mass is
aboutmp ' 9:0 � 109 h� 1M � . The adopted cosmology is com-
parable with the WMAP 5 year� CDM model. with� 8 = 0 :794
and matter, baryonic matter, and dark energy density parameters
of 
 m; 0 = 0 :26; 
 b;0 = 0 :044, and
 � ;0 = 0 :74, respectively.
The initial conditions were generated atzi = 100 according to
the second-order Lagrangian Perturbation Theory (2LPT; Jenkins
2000). The gravitational force on each particle was calculated us-
ing the PM-Tree method by the GOTPM (Dubinski et al. 2004)
down toz = 0 in 2000 global time steps, see Figure 2. The force
resolution is 0.05h� 1Mpc, i.e. 1/10 of the mean particle separation.

To enhance the positional accuracy of particles, we adopt the
shift vector rather than the position vector for particle information.
In such a huge simulation like HR4, the 32-bit �oating-point accu-
racy has a round-off error around sub-% level in terms of the mean
particle separation, and a large time-step evolution may accumulate
such errors and may affect the �nal matter distributions. Without
requesting any more memory space, we devised a trick using the
particle index as the Lagrangian position and the shift vector to cal-
culate the particle position. For more details about the simulation
and methods adopted by the GOTPM, see Kim et al. (2015).

3.2 Measuring the bias functions

To measure the bias functions we will make use of equa-
tions (26), (28), (31) and (32). In practice, we determine the val-
ues of the PDFs in bins of a certain width around the given value
by counting the number of densities in a given bin using stepwise
functions. The HR4 simulation density is estimated via dark mat-
ter count-in-cell in2523 cells separated by12:5Mpc=h. We use
spheres of radiiR = 10 ; 11; 12; 13; 14; 15 Mpc=h with a separa-
tion r e = 37 :5Mpc=h which is big enough to ensure that we are in
the large separation regime, see Codis et al. (2016a).
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Correlation function We measure the sphere correlation function
at distancer e according to

�̂ (r e) =

P N t
I=1

P 6
j =1 � I � � I ;j

6Nt
� 1: (19)

In practice, we count all pairs of spheres only once when computing
�̂ (r e) by only considering three neighbours for each sphere.

Density bias The density bias is estimated using the cross-
correlations of spheres with radiusR de�ned in equation (26).
More precisely, we compute a sum over each sphereI with den-
sity � I and its 6 neighbours at distancer e labelled with the indices
� I ;j for 1 6 j 6 6

b̂(�̂ ) =
1

�̂

" P
I

P 6
j =1 B(j� I � �̂ j 6 � �= 2)� � I ;j

6
P

I B(j� I � �̂ j 6 � �= 2)
� 1

#

; (20)

whereB is a boolean function which evaluates to one if the density
is in a bin centred on̂� with width � � = 0 :1. Note that the density
bias can also be measured using auto-correlations which has been
shown to give results consistent with cross-correlations, see Codis
et al. (2016a).

Joint density slope biasIn order to measure the slope bias in the
simulation, we consider the set of concentric spheres with radii
R1=2 such thatR2 � R1 = 1Mpc =h. Following equation (28),
we compute again a sum over each setI and its 6 neighbouring sets
at distancer e labelled with the indices� I ;j for 1 6 j 6 6

b̂(�̂; ŝ)=
1

�̂

" P
I ; j B(j� I � �̂ j 6 � �= 2; jsI � ŝj 6 � s=2)� � I ;j

6
P

I B(j� I � �̂ j 6 � �= 2; jsI � ŝj 6 � s=2)
� 1

#

;

B is a boolean function which evaluates to one if the density is in
a bin centred on̂� with width � � = 0 :2 and the slope is in a bin
centred on̂s with width � s = 0 :02R1 .

Constrained density bias given environmentFrom the joint bias
of the density and slope one can also determine a constrained den-
sity bias given an environment either speci�ed by a positive or neg-
ative slope

b̂(�̂ js7 0)=
1

�̂

" P
I ; j B(j� I � �̂ 1 j 6 � �= 2; sI 7 0)� � I ;j

6
P

I B(j� I � �̂ 1 j 6 � �= 2; sI 7 0)
� 1

#

;

or an over- or underdense shell� 12 =( R3
2 � 2 � R3

1 � 1)=(R3
2 � R3

1)

b̂( �̂ j� 12 7 1)=
1

�̂

" P
I ; j B(j� I � �̂ j 6 � �= 2; � 12;I 7 1)� � I ;j

6
P

I B(j� I � �̂ j 6 � �= 2; � 12;I 7 1)
� 1

#

;

which are both measured with bins of width� � = 0 :1.

3.3 Parametrizing the covariance matrix

In order to determine the decay-rate function, the joint PDFs and
hence also the bias functions, one needs to compute the covariance
matrix between initial densities in spheres of radiiR i andR j as
de�ned in equation (8). For the sake of simplicity, we choose here
to parametrize this covariance matrix in analogy to a power-law
initial spectrum with spectral indexn = n(Rp ) by

� 2(R i ; R i ) = � 2(Rp )
�

R i

Rp

� � n ( R p ) � 3

; (21a)

� 2(R i ; R j>i ) = � 2(Rp ) G
�

R i

Rp
;

R j

Rp
; n(Rp )

�
; (21b)

z R [Mpc/h] 10 11 12 13 14 15

4:0 �̂ � ' �̂ � 0.18 0.17 0.16 0.15 0.14 0.13
0:7 �̂ � 0.51 0.47 0.44 0.41 0.39 0.37
0:7 �̂ � 0.46 0.43 0.41 0.39 0.37 0.35
0:0 �̂ � 0.74 0.68 0.63 0.59 0.55 0.52
0:0 �̂ � 0.61 0.58 0.55 0.52 0.50 0.48

Table 1. Variances of the density� and the log-density� = log � for dif-
ferent radiiR and redshiftsz as measured from the HR4 simulation.

where

G(x; y; n ) =

Z
d3k kn W3D (kx)W3D (ky)

Z
d3k kn W3D (kRp )W3D (kRp )

=
(x + y) � �

x2 + y2 � �xy
�
� (y � x) � �

x2 + y2 + �xy
�

2� (n + 1) x3y3
;

with � = 1 � n. The key parameter in the prediction of the PDF
is the value of the variance at the pivot scaleRp which we measure
in the simulation and use as an input to our theoretical model. We
report the results for the measured variance of both the density�
and the log-density� = log � in Table 1.

3.4 The density PDF in concentric spheres

For the predictions of the one- and two-cell PDF of the density-in-
spheres we use equation (12) specialized to an appropriate logarith-
mic mapping that provides a wide range of applicability for the sad-
dle point approximation. Note that the functional forms were pre-
sented in Uhlemann et al. (2016) and compared to measurements
from a 500 Mpc=h Gadget2 simulation (Springel 2005) sampled
with 10243 particles. Here, we confront them with the signi�cantly
more accurate measurements from the HR4 simulation at redshift
z = 0 :7; the results forz = 0 are shown in Appendix D.

3.4.1 One-cell density PDF

For the one-cell PDF the appropriate mapping leading to an accu-
rate density PDF is simply the logarithm of the density,

� = log � : (22)

The density PDF is then obtained as

PR (� ) =

r
	 00

R [� ] + 	 0
R [� ]=�

2�
exp (� 	 R [� ]) : (23a)

The normalized PDF with the corrected mean is obtained from
equation (23a) according to

P̂R (� ) = PR

�
� �

h� i
h1i

�
�

h� i
h1i 2

: (23b)

In Figure 3 we compare the saddle point approximations of
the PDF obtained from equation (23) evaluated with the help of
LSSFast (Codis et al. 2016, see also Appendix A) to the mea-
surements from the HR4 measurement for 6 different radiiR =
10; 11; :::; 15Mpc/h at redshiftz = 0 :7. The agreement is spectac-
ular over a wide range of densities.

3.4.2 Two-cell joint density slope PDF

A suitable and physically motivated change of variables for the
two-cell case is given by the logarithmic transform of the sum and
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Non-linear two-point statistics of cosmic densities7

Figure 3. The density PDFP (� ) (left-hand panel)predicted from the saddle point approximation equation (23) usingLSSFast (solid lines)for redshift
z = 0 :7 and radiiR = 10 ; 11; :::; 15Mpc/h (from blue to red)with variances as given in Table 1, in comparison to the measurement from HR4(data points
with error bars)and the corresponding residuals(right-hand panel). See also Figure D3 for lower redshift PDFs. For this �gure, we used� = 1 :59 instead of
� = 21 =13 ' 1:61 because it leads to smaller residuals (see Appendix (D)).

difference of mass

� 1 = log
�
r 3 � 2 + � 1

�
; � 2 = log

�
r 3 � 2 � � 1

�
; (24)

where the relative shell thickness isr = R2=R1 and mass con-
servation ensures� 2 to be real. The PDFP(� 1 ; � 2) can then be
approximated via equation (12), which can explicitly be rewritten
as

PR 1 ;R 2 (� 1 ; � 2) =
exp [� 	 R 1 ;R 2 ]

2�

p
pR 1 ;R 2 (� 1 ; � 2) ; (25a)

with

pR 1 ;R 2 (� 1 ; � 2) = det
�

@2 	 R 1 ;R 2

@�i @�j

� �
det

�
@�i
@�j

�� 2

(25b)

=
�

1
2r 3

	 ;22 + 	 ;12 +
r 3

2
	 ;11 +

	 ;2 + r 3 	 ;1

r 3 � 2 + � 1

�

�
�

1
2r 3

	 ;22 � 	 ;12 +
r 3

2
	 ;11 +

	 ;2 � r 3 	 ;1

r 3 � 2 � � 1

�

�
�

	 ;22

2r 3
�

r 3 	 ;11

2

� 2

;

with 	 ;1 and 	 ;2 denoting partial derivatives with regard to� 1

and� 2 respectively. Analogously to the one cell case, one still has
to enforce the mean and normalization for the saddle point PDF
obtained from equation (25) following the procedure described in
equations (12c)-(12d). In practice, it is often useful to express the
joint density PDFP(� 1 ; � 2) not in terms of the two densities but
rather as function of the inner density� = � 1 and the slope
s = ( � 2 � � 1)=(R2=R1 � 1) or the density in the outer shell
� 12 = ( R3

2 � 2 � R3
1 � 1)=(R3

2 � R3
1). The result is displayed in Fig-

ure 4 and compared to the measurements. Overall we observe a
very good agreement; it is however not as good as for the one-cell
case as we did not compute it with the exact linear power spectrum
but assumed a power-law power spectrum through the parametriza-
tion (21). It was shown in Bernardeau et al. (2014) that taking into
account the running of the spectral index can improve the result.

3.5 The bias functions at large separation

To predict the bias functions for densities-in-spheres, we will use
equation (16) with the variance of the log-density from Table 1

Figure 4.The joint density-slope PDFP (� 1 ; � 2 ) predicted from the saddle
point approximation equation (25)(thick lines)as a function of the central
density� 1 and the shell density� 12 for radii R1;2 = 14 ; 15 Mpc/h and
redshiftz = 0 :7 where� � = 0 :37 in comparison to the measurement from
HR4 (thin wiggly lines). The agreement is quite good and demonstrates the
wide dynamical range of this simulation. See also Figure D3 for the same
PDF at redshiftz = 0 .

as input together with the normalization procedure described in
equation (18). While the functional form of the density bias was
introduced already in Bernardeau (1996) for the saddle point ap-
proximation applied to the density, we provide improved analyti-
cal predictions based on the log-density mapping together with a
normalization scheme that are as good as results from a numeri-
cal integration presented in Codis et al. (2016a). Furthermore, we
provide new predictions for the joint density bias and the derived
constrained biases given the density environment. Here, joint den-
sity bias refers to the bias,b(� 1 ; � 2), corresponding to a region of
density� 1 smoothed onR1 and� 2 onR2 .
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3.5.1 One-cell density bias

The density bias describes the cross-correlation of spherical cells
given one spherically-averaged density at separationr e

1 + b(� )� (r e) = h� 0j� ; r e i =

Z 1

0
d� 0P(�; � 0; r e)� 0

P(� )
: (26)

Physically the density bias describes the mean of the density found
in a sphere of radiusR given that the density in a sphere of the
same radius at separationr e is � .

The density bias can be straightforwardly obtained from the
saddle point approximation for the log-density� = log � by eval-
uating equation (16) for a given� in a cell of radiusR as

bR (� ) =
� (1 � � � 1=� )
� 2

� (R� 1=3)
'

� (1 � � � 1=� )�
3+ n ( R )

3

� 2
� (R)

: (27a)

and then normalizing according to

b̂R (� ) =
bR (� ) � h bR (� )i

h�b R (� )i � h bR (� )i
: (27b)

where the averages denoted byh�i are computed as integrals with
the one-cell saddle point PDF equation (23). The result is plotted in
Figure 5 for redshiftz = 0 :7 and radiiR = 10 ; 12; 14Mpc=h with
variances as indicated in the legend. In Figure D6 in Appendix D
we also show redshiftz = 0 . One can see that unbiased results
are obtained for densities close to the mean density, but note that
the bias at the mean density is not exactly zero, as explained in
Appendix C on the basis of perturbation theory. The amplitude of
the bias grows with the deviation from the background density and
is, as expected, positive for overdense and negative for underdense
regions. We can clearly see that the saddle point bias functions pre-
dict a deviation from the linear growth of Kaiser bias from equa-
tion (14) and are in excellent agreement with the measurements; the
normalization procedure (18) correctly captures the �nite value of
the bias at mean density. In Figure 6, we show that the prediction of
equation (27), which relies on large deviation statistics and spher-
ical collapse, extends the classical Kaiser bias result from equa-
tion (14) valid in the Gaussian and hence linear regime towards the
non-Gaussian, mildly nonlinear regime. Hence we obtain correc-
tions to the linear growth of the bias with density contrast: we ob-
serve that the bias for underdense regions is signi�cantly enhanced
because in the non-Gaussian regime the sharp cutoff at zero den-
sity becomes apparent which suppresses the rare-event tail further
and disfavours very small densities. In turn, the bias for overdense
regions is suppressed because the gravitational evolution bends the
rare-event tail upwards and therefore favours large overdensities.

3.5.2 Joint density-slope bias

The two-cell bias is given by

1+ b(� 1 ; � 2)� (r e) = h� 0j(� 1 ; � 2); r e i (28)

=

R1
0 d� 0P(f � 1 ; � 2g; � 0; r e)� 0

P(� 1 ; � 2)
;

whereP(f � 1 ; � 2g; � 0; r e) is a marginal of the two-cell PDF

P(f � 1 ; � 2g; � 0; r e) =
R1

0 d� 0
2 P(f � 1 ; � 2g; f � 0; � 0

2g; r e) :

The joint density and slope bias describes the mean of the den-
sity found in a sphere of radiusR = R1 given that at a distance
r e, the densities in spheres of radiiR1 and R2 are respectively
(�̂ 1 ; �̂ 2). The result, before normalization, is straightforwardly ob-

Figure 5. The normalized density bias functionb̂R (� ) predicted from the
saddle point approximation given by equation (27) for the log-density� =
log � for ns = � 1:6 and different values of the variance. This prediction
is compared to the HR4 measurements at redshiftz = 0 :7 for different
radii R in Mpc/h and hence variances as indicated in the legend. See also
Figure D5 for redshiftz = 0 .

Figure 6. Density biasb(� ) from equation (27)(blue line)predicted from
the saddle approximation for� = 0 :50 and spectral indexns = � 1:5 and
compared with the Kaiser bias from equation (15)(purple line)valid only
in the Gaussian regime but extrapolated here into the non-Gaussian regime.

tained from the general formula (16)

bR 1 ;R 2 (� 1 ; � 2) = �
2X

i;j =1

� ij

�
R i �

1=3
i ; R j � 1=3

j

�
(1 � � � 1=�

i ) ; (29)

where the covariance matrix is given by equation (8) and can be
parametrized by equation (21) for a power-law initial spectrum.
We can again use the variables describing the inner density� 1 to-
gether with the slopes = ( � 2 � � 1)=(R2=R1 � 1) or the den-
sity in the outer shell� 12 = ( R3

2 � 2 � R3
1 � 1)=(R3

2 � R3
1). The

result, normalized according to equation (18), is shown for radii
R1;2 = 14 ; 15Mpc=h at redshiftz = 0 :7 in Figure 7 (and at red-
shift z = 0 in Figure D6). Besides the general trend that the bias
increases with increasing over- or underdensity, one can see that
unbiased results are obtained along the green line for which either
both densities are close to the background density or the over- or
underdensity of the central density is roughly counterbalanced by
a under- or overdense shell, respectively. Again we �nd a devia-
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Non-linear two-point statistics of cosmic densities9

Figure 7. A contour plot of the joint density and slope bias function
b(� 1 ; � 2 ) predicted from the saddle approximation equation (29) with nor-
malization from equation (18) as a function of the central density� 1 and
the shell density� 12 for R1 = 14 Mpc=h andR2 = 15 Mpc=h at redshift
z = 0 :7 where� � =0.37 (corresponding to� � = 0 :39) in comparison to
the measurements from HR4 (mean as thick black lines, and mean� error
on the mean as thin black lines). Shown is also the stationary line� 2 (� 1 )
(purple line) along which the joint bias function has to be evaluated to ob-
tain the density biasb(� 1 ) = b(� 1 ; � 2 (� 1 )) . The green line corresponds to
zero bias.

tion from the linear growth predicted by the linear bias described
in equation (15) and good agreement with the measurements.

Consistency check.Note that by decimation of variables we
can obtain the one-cell density biasb(� 1) from the joint two-cell
density biasb(� 1 ; � 2) by evaluating it along the stationary line
� stat

2 (� 1) of the decay-rate function (shown as purple line in Fig-
ure 7) as

0 =
@	
@�2

�
�
�
� 2 = � stat

2 ( � 1 )
) b(� 1) = b(� 1 ; � stat

2 (� 1)) ; (30)

which indeed gives back the density bias shown in Figure 5.
Constrained bias given environment.Given that we have the

full knowledge of the two-cell bias function we can now determine
two constrained quantities: the density bias in a positive or negative
slope environmentb(� 1 j� 2 ? � 1) as well as the bias in an over- or
underdense shellb(� 1 j� 12 ? 1).

3.5.3 Density bias in a positive or negative slope environment

The constrained bias for the density� given a positive or negative
slopes can be obtained from

(b�P )( � 1 j� 2 ? � 1)=
Z 1

0
d� 2 (b�P )( � 1 ; � 2)� (� (� 2� � 1)) ; (31a)

where� is the Heaviside step function. Note that apart from nor-
malization this equation resembles the de�nition of the constrained

Figure 8. The constrained density bias function for negative slopes
b(� 1 j � 2 < � 1 ) (red line)and positive slopesb(� 1 j � 2 > � 1 ) (green line)
compared to the unconstrained density biasb(� ) (blue line)which agrees
with the density bias from the one-cell saddle point approximationb1 (� )
(purple line)shown in Figure 5. The coloured spheres, where darker color
indicates higher density, sketched in the inset illustrate the different cases
considered for the correspondingly coloured lines in the plot. All results are
obtained from the saddle point approximation for the log-density for radii
R1 = 14 Mpc=h andR2 = 15 Mpc=h at redshiftz = 0 :7 with variance
� � =0.37. Once again the agreement is excellent.

PDF whenb = 1 and we have that

b(� 1)=
(b � P )( � 1 j� 2 <� 1)

P (� 1)
+

(b � P )( � 1 j� 2 >� 1)
P (� 1)

; (31b)

where we de�ne the constrained bias as

b(� 1 j� 2 ? � 1) =
(b � P )( � 1 j� 2 ? � 1)

P (� 1 j� 2 ? � 1)
: (31c)

Hence, we can easily compare the constrained bias function to its
unconstrained analogue. This is done in Figure 8. A positive slope
increases the bias for all densities with a strength growing with
the central density, while a negative slope has the opposite effect.
Because a mean central density with a negative or positive slope
will appear as overall under- or overdense, respectively, the value
of the bias at mean density and the point of vanishing bias ap-
pear shifted. An intuition about this shift can be gained from a
peak-background split argument by computing the mean density
given positive or negative slope which yieldsh� 1 j� 2 > � 1 i = 1 :15
andh� 1 j� 2 < � 1 i = 0 :85, respectively. The constrained density
bias given slope provides us with a proxy for peaks in the spirit
of BBKS, which correspond to overdensities with negative slope
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Figure 9. The constrained effective density bias function in underdense
shellsb(� 1 j � 12 < 1) (red line)and overdense shellsb(� 1 j � 12 > 1) (green
line) compared to the unconstrained density biasb(� 1 ) (blue line). All re-
sults are obtained from the saddle point approximation for log-density with
radii R1 = 14 Mpc=h and R2 = 15 Mpc=h at redshiftz = 0 :7 with
the variance� � =0.37. The agreement is quite good so long as the PDF is
signi�cantly non zero.

(peaks) and underdensities with positive slope (voids), respectively.
Those con�gurations also give the asymptotes of the density bias
for extreme densities, because large strongly under- or overdense
regions will mostly have positive or negative slopes, respectively,
which causes one contribution from equation (31b) to dominate in
the regime of extreme densities. Note that, while BBKS determine
peaks in the initial Gaussian �eld and then apply collapse crite-
ria based on spherical collapse, we here use spherical collapse to
predict the �nal non-Gaussian statistics of densities-in-spheres and
use special con�gurations to get a proxy to peaks in the �nal �eld.
It is worth nothing that our formalism describes large peaks of the
density �eld in a similar (but not equivalent) fashion as peak bias
studies do following the de�nition introduced in BBKS (see e.g
Desjacques et al. (2010)). Those two different approaches give a
complementary insight on halo biasing, either by focusing on over-
dense regions with negative slopes in the mildly non-linear regime
(this work) or on the maxima of the Gaussian Lagrangian density
�eld (BBKS).

3.5.4 Density bias in an over- or underdense shell

The constrained bias for the central density� given an over- or
underdense shell with density� 12 = ( R3

2 � 2 � R3
1 � 1)=(R3

2 � R3
1)

can be obtained from

(b�P )( � 1 j� 12 ? 1)=
Z 1

0
d� 12 (b�P )( � 1 ; � 12 )� (� (� 12� 1)) ; (32a)

such that

b(� 1) =
(b � P )( � 1 j� 12 < 1)

P(� 1)
+

(b � P )( � 1 j� 12 > 1)
P(� 1)

: (32b)

where we de�ne the effective constrained bias to be

b(� 1 j� 12 ? 1) =
(b � P )( � 1 j� 12 ? 1)

P(� 1 j� 12 ? 1)
: (32c)

The results are shown in Figure 9 where we see that the constrained
density bias given an underdense- or overdense environment gives
the asymptote of the density bias for small and large densities, re-
spectively. This is due to the fact that large, strongly under- or over-
dense regions will mostly have under- or overdense environment,
respectively, which causes one contribution from equation (32b)
to dominate in the regime of extreme densities. The interesting
regime is where the constrained biases deviate from the averaged
bias which is when we �nd an overdensity residing inside an un-
derdensity (red line in the half where� 1 > 1) or vice versa an
underdensity residing inside an overdensity (green line in the half
where� 1 < 1 ). In this speci�c con�guration, over- and underden-
sities are not only peaks, but even isolated, such that we can think
of them as voids surrounded by walls or clusters surrounded by
voids. Because a mean central density with a surrounding under-
or overdense shell will appear as overall under- or overdense, re-
spectively, the value of the bias at mean density and the point of
vanishing bias appear shifted. An intuition about this shift can be
gained once again from a peak-background split argument by com-
puting the mean density given an over- or underdense shell which
yields h� 1 j� 12 > 1i = 1 :3 andh� 1 j� 12 < 1i = 0 :8, respectively.
Besides that, the bias of overdensities is reduced for isolated over-
densities because of the `screening' effect of the surrounding un-
derdense shell and vice versa for isolated underdensities.

3.6 The two-point correlation function of densities-in-spheres

The two-point correlation function of densities-in-spheres was in-
troduced in equation (2b) to relate the joint PDF of densities at large
separation to individual density PDFs. After having obtained ana-
lytical predictions for the density bias and constrained density bias
we can use them to predict the modulation for the correlation func-
tion � (r e) that is introduced by those bias functions. In Figure 10
we show the modulation functionb(� )b(� 0) = � � (�; � 0; r e)=� (r e)
computed from the unconstrained density bias and constrained den-
sity bias given slope as was shown in Figure 8. As mentioned be-
fore, the constrained density bias given a negative or positive slope
can be viewed as giving a proxy to peaks when we have a nega-
tive slope around an overdensity (positive peak) or positive slope
around an underdensity (negative peak), respectively. Hence, the
different bias modulations we show are the ones for the auto- and
cross-correlations of masses (unconstrained densities) and peaks
(densities with slopes), in the spirit of Regos & Szalay (1995); Bal-
dauf et al. (2016), but with the added value of capturing the quasi-
linear regime of structure formation.

The upper panel shows the autocorrelation for positive peaks
(negative slopes), mass and negative peaks (positive slopes). The
mass correlation function in the middle upper panel shows that
over- and underdensities among themselves are positively corre-
lated and more strongly clustered than spheres of average density
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(lower left and upper right part of the plot) while over- and under-
dense spheres are negatively correlated with each other (lower right
and upper left part). The point of zero bias, when compared to the
unconstrained case, is shifted into the quadrant that corresponds to
over- or underdensities if positive or negative peaks are involved
which also points to the interesting region of the plots where the
peak correlation differs from the average correlation. The lower
panel shows the cross-correlations between positive peaks (nega-
tive slopes), mass and negative peaks (positive slopes).

Overall the ab initio analytic bias functions for the two-point
correlation of density in spheres, equations (27) and (29), have been
shown to be in very good agreement with the HR4 simulation. This
is remarkable, given that these function are very simple explicit al-
gebraic functions of the underlying linear power spectrum via equa-
tion (8) or (21). It also demonstrates that modern simulations cap-
ture very accurately the one and two-point statistics of non-linear
gravitational clustering.

4 DARK MATTER CORRELATION ML ESTIMATOR

Equation (2a) allows us toanalytically model the statistics of the
cosmic density �eld in two locations of space. This model only de-
pends on two parameters: the variance of the density �eld measured
at present-time,� 2(R), and the value of the two-point dark matter
correlation function,� (r e), at the separation. Therefore, following
the ideas developed in Codis et al. (2016b) for the estimation of the
variance� (R), one can build a maximum likelihood estimator for
the two-point correlation� (r e) which should perform better than
the sample estimator as time grows and non-gaussianities arise.

Let us focus here on the two-point density statistics at one
scale only for which equation (2a) becomes

P(�; � 0) = P(� )P (� 0)(1 + � (r e)b(� )b(� 0)) ; (33)

where� 0 is the density at a distancer e from � . In equation (33),
the one-point PDFs only depend on the variance and are computed
using the public codeLSSFast described in Appendix A and the
biasb(� ) is predicted via equation (16). This two-cell PDF is shown
on the left-hand panel of Figure 11 where the effect of the spatial
clustering (dashed line) is compared to the case with no spatial cor-
relation (solid line).

4.1 Fiducial experiment from HR4

Let us carry out the following experiment: consider the2523

spheres of radiusR = 15Mpc=h of the HR4 simulation atz = 0 :7
equally spaced on a grid of resolution� R = 12 :5Mpc=h and let
us estimate the corresponding dark matter correlation function at
different separations keeping the variance �xed. To do so, for each
separationr i = 4� R : : : 20� R, we look for all pairs of spheres
separated byr i and compute the log-likelihood for different models
described by� (r i )

L (� (r i )) =
X

( p;q )

log P(� p ; � 0
q) ; (34)

where the indices(p; q) describe all pairs of spheres separated by
r i . The maximum of the likelihood can then be found together with
the� sigma contours whereL = max L (� (r i )) � 1=2� 2 . In prac-
tice, we only consider separations above4� R = 50Mpc=h to
avoid the small region where the modeled two-point PDF is not
yet in the large separation regime (but the bias functions, which de-
scribe themeandensity at given separation, are in such regime long

before that). However, it is expected that one could restrict the anal-
ysis around the maximum of the PDF and therefore get an estimate
of the dark matter correlation function even for smaller separations.

The right-hand panel of Figure 11 shows the corresponding
maximum likelihood estimate for� (r e) as a function of the separa-
tion compared to a sample estimator with no prior on the underlying
PDF

�̂ A = h� p � q i � 1 : (35)

The agreement between the sample and likelihood estimators is re-
markable, highlighting that the model presented here for the two-
point density PDF is very good and could be used to measure more
accurately the dark matter correlation function.

4.2 Qualifying the estimator

This procedure is expected to perform better than usual sample es-
timators when the �eld becomes mildly non-linear. Indeed, in anal-
ogy to the analysis presented in Codis et al. (2016b), one can show
that the scatter of the maximum likelihood estimator,

�̂ ML = argmax L (� ); (36)

is much smaller than that of the sample estimator,�̂ A . To illustrate
this point, for different separationsr e between 50 and 250Mpc=h,
we randomly divide the pairs of spheres of radiusR = 15Mpc=h in
216 subsets. For each subset, we estimate the dark matter correla-
tion function via the sample estimator and the maximum likelihood
estimator. The mean and one standard deviation are shown on Fig-
ure 12. Both are shown to be unbiased, as the mean is consistent
with the correlation function measured from the full simulation,
and do not depend on the separation. But, the maximum likelihood
estimator is shown to give a tighter measurement of the dark matter
correlation function than the arithmetic estimate, the scatter being
reduced by a factor of �ve in this case. This method could there-
fore be applied successfully to real surveys provided one is able
to model galaxy biasing (Feix et al in prep.). Such likelihood es-
timators could also be generalized to subset regions of the top-hat
�ltered �eld where the density has a given value, which could be
chosen so as to optimize the sought level of non-linearity.

Note �nally that the underlying cosmological parameters en-
ter the likelihood functionL (z) at a given redshift,z, twice: via
the bias function,b(�; z ), and via the generalized perturbation the-
ory redshift dependent two-point function,� (r; z ). Following Codis
et al. (2016b), one could imagine in the long run building an opti-
mal dark energy experiment which would measure the dark energy
parameters while leveraging both the one and two-point statistics

(ŵ0 ; ŵa ) = argmax
w 0 ;w a

X

z

L (zjw0 ; wa ) ;

wherew0 andwa would parametrize the equation of state of dark
energy (Glazebrook & Blake 2005).

5 CONCLUSIONS

This paper presented simple parameter-free analytic bias functions
for the two-point correlation of density in spheres (equations (27)
and (29)). These bias functions generalize the so-called Kaiser bias
in the mildly non-linear regime for (not so) large separation and
for arbitrary contrast when considering the density smoothed with
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Figure 10. The bias modulation of the two-point sphere correlation functionb(� )b(� 0) = � � (�; � 0; r e)=� (r e) for radii R = R0 = 14 Mpc=h at redshift
z = 0 :7 with the variance� � =0.37 computed from the bias and constrained bias in an over- or underdense mass shell shown in Figure 8. Besides equi-bias
contours we show the line of zero biasb = 0 (green line)and unity biasb = � 1 (green dotted and dashed line)and sketch the con�gurations in the insets.
(upper panels)auto-correlations for densities with negative slope (positive peaks)(left), unconstrained densities in comparison to HR4 measurements (mean
as thick black lines, and mean� error on the mean as thin black lines)(middle)and densities with positive slope (negative peaks)(right). (lower panels)
cross-correlations between densities with negative slope and unconstrained densities(left), densities with negative slope and densities with positive slope
(middle)or densities with positive slope and unconstrained densities(right). This modulation captures the expected bias clustering of peaks and voids beyond
the linear regime.

a top-hat �lter (or equivalently measured in spheres). The deriva-
tion was carried out using a large-deviation principle, while rely-
ing on the spherical collapse model. A logarithmic transformation
allowed for a saddle approximation, which was shown to be ex-
tremely accurate against the state-of-the-art HR4 N-body simula-
tion throughout the range of measured densities, e.g. extending the
match to the theory by a factor of 10 or more on joint PDFs, con-
ditionals and marginals. This is both a success of the theory and
an assessment of the quality of this simulation. The conditional
density-given-slope and density-given-mass biases were also pre-
sented as a quasi-linear proxy to the BBKS extremum correlation
functions operating at lower redshifts. As an illustration, Figure 10
presented the expected bias modulation of the sphere-sphere corre-
lation function at redshift 0.7 in spheres of 14 Mpc=h.

Codis et al. (2016a) recently showed how such bias functions
could be used as a mean of mitigating correlation errors when com-
puting count-in-cell statistics on �nite surveys. Conversely, based
on the knowledge of the joint PDF of the density in spheres sep-
arated byr e, we presented and implemented in Section 4 a maxi-
mum likelihood estimator for the underlying top-hat smoothed dark

matter density, which was shown to be unbiased and very accu-
rate for separations above 50Mpc=h. Its variance is up to 5 times
smaller than that of the classical sample estimator. Hence these an-
alytic bias functions should be used jointly with analytic models
for the two-point function from perturbation theory for cosmic pa-
rameter estimation, as they capture the biasing effect of non-linear
regime of structure formation.

Let us stress in closing that the saddle point PDFs presented
in this work are not arbitrary �tting functions, but a clear predic-
tion of the theory of gravitational clustering which allows for direct
comparison with data a low redshift. These PDFs should be also
compared favourably with �ts to a lognormal PDF which provide
a much worse match as illustrated in Figure D1. The saddle point
approximation presented here gives, at very little extra cost, a few
percent accuracy over about 4 orders of magnitude in the values
of the one- and two-cell PDFs and percent accuracy on the bias
functions all densities probed by the simulation with an explicit de-
pendence of both cosmology, through the initial power spectrum,
and the chosen theory of gravitation, though the spherical collapse
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Figure 11.Left-hand panel: PDF of the densities separated byr e = 50 Mpc=h in the HR4 simulation (from dark to light blue) and predicted for� (r e) = 0
(dashed) and0:00558(dotted). Contours are displayed forlog P = 1 ; 0:5; 0 � � � � 4. Right-hand panel: one (dark blue) and three-sigma (light blue) contours
for the maximum likelihood estimate of the dark matter correlation function,�̂ ML , compared with the arithmetic estimate,�̂ A , (dashed line).

Figure 12. Estimate of the dark matter correlation function atz = 0 :7
in 216 random subsamples ofN = 222,264 pairs of spheres of radius
R = 15 Mpc=h separated byr e = 50 : : : 250Mpc=h. The mean and one
standard deviation area are shown in blue for the maximum likelihood es-
timator �̂ ML and in red for the usual sample estimator�̂ A . We display only
the difference compared to the dark matter correlation function measured
in the full simulation which is assumed to be the true underlying value of
� . As expected, the maximum likelihood estimator provides a much smaller
scatter than the sample estimator.

model. In this paper we ignored redshift-space distortion or galaxy
biasing which will be investigated in Feix et al (in prep.).
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APPENDIX A: LSSFAST PACKAGE

The one-point density PDF and the bias functions for power-
law and arbitrary power spectra are made available in the
LSSFast package distributed freely at http://cita.utoronto.ca/
� codis/LSSFast.html. Two versions of the code are presented. The
simpler version,� PDFns and� biasns , assumes a running index,
meaning that the variance is given by

� 2(R) =
2� 2(Rp )

(R=Rp )3+ n s + � + ( R=Rp )3+ n s � � ; (A1)

where� can be non-zero to take into account the variation of the
spectral indexns . The density PDF is analytically computed from
equation (23) and the bias from equation (27). This code is very
ef�cient and runs in about one second on one processor for one
evaluation. Note that the functions� PDFns and � biasns take
three arguments,� , � andns , and has one option,� .

The second version of the code,� PDFand� bias , can be ap-
plied to arbitrary power spectra. In this case, the function� 2(R) is
tabulated using equation (8). Once this tabulation is done (typically
one minute on one processor), each evaluation of the PDF and the
bias takes about the same time as for the power-law case (� 1 sec).

APPENDIX B: PDF AND BIAS FUNCTION DERIVATION

Let us present shortly the idea behind the large deviation principle
that allows to obtain the PDF of densities in concentric cells and the
generalization to the joint PDF of densities at different positions.
For more details we refer to Uhlemann et al. (2016) and Codis et al.
(2016a).

B1 The PDF of density in concentric spheres

Bernardeau et al. (2014) computed the joint PDF,P(f � k g), of
densities in concentric spheres, a highly symmetric con�guration
which allows to take advantage of the spherical collapse model for
gravitational dynamics. To obtain the PDF we use the cumulant
generating function of densities in concentric cells,' (f � k g), de-
�ned via a Laplace transform of the density PDFP(f � k g)

' (f � k g) = log
� Z

� k d� k exp(� k � k � k ) P (f � k g)
�

; (B1)

= log[ hexp(� k � k � k )i ] =
1X

p i =0

h� i � i
p i i c

� i �
p i
i

� i pi !
:

This relationship is useful because, in the limit of zero variance,
the cumulant generating function is obtained analytically from the
decay-rate function	( f � k g) via a Legendre transformation

' (f � k g) =
X

i

� i � i � 	( f � k g) ; � i =
@

@�i
	( f � k g) ; (B2)

where the conjugate variablesf � k g are functions of the densities
f � k g via the stationary condition on the decay-rate function which
in turn has been obtained from the initial decay-rate function by a
simple remapping according to spherical collapse as described in
equation (10) (as a result of the contraction principle). The PDF
of the density is then given as an inverse Laplace transform of the
cumulant generating function' (f � k g)

P(f � k g) =
Z Y

k

d� k

2� i
exp

"

�
X

k

� k � k + ' (f � k g)

#

: (B3)

Hence, PDF can be obtained from a numerical integration in the
complex plane as done in Bernardeau et al. (2014, 2015) or evalu-
ated using a saddle point approximation for the log-density (which
has a close-to-optimal range of validity) as described in Uhlemann
et al. (2016).

B2 Two-point clustering of concentric spheres

Let us now consider two sets of concentric spheres separated by a
distancer e and de�ne the corresponding densitiesf � k g � f � 1;k g
and f � 0

k g � f � 2;k g. We are interested in the joint density PDF
P(f � k g; f � 0

k g; r e) which, at large separationsr e > R k , can be
predicted from the individual PDFsP(f � 1=2;k g) and some effec-
tive bias functionsb(f � 1=2;k g) according to equation (2b). The ef-
fective bias functions encode the correlations of the densities in
spheres which are hence related to the two-point correlation func-
tion � of the underlying dark matter distribution. In analogy to
the density PDF at one point, also the joint density PDF at two
different points can be obtained from the corresponding cumu-
lant generating function' (f � k g; f � 0

k g; r e) of the joint cumulants
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h� p1
1 : : : � pn

n � 0q1
1 : : : � 0qm

m i c as inverse Laplace transform

P(f � k g; f � 0
k g; r e) = (B4)

Z Y

k

d� k

2� i
d� 0

k

2� i
exp

�
� � k (� k � k + � 0

k � 0
k ) + ' (f � k g; f � 0

k g; r e)
�

:

In Codis et al. (2016a) it has been shown that in the large separation
limit, where the separation distancer e is much larger than all radii
Rk at the individual points, the joint cumulant generating function
' (f � k g; f � 0

k g; r e) can be derived based on the following idea: for
large enough separations the joint cumulants can be shown to be
well approximated by

h� p1
1 : : : � pn

n � 0q1
1 : : : � 0qm

m i c =

1
� (r e)

h� p1
1 : : : � pn

n � 0
1 i ch� 1 � 0q1

1 : : : � 0qm
m i c : (B5)

Hence, in this limit, it is enough to know the subset of cumulants
of the typeh� p1

1 : : : � pn
n � 0

1 i c to determine the generating function
of joint cumulants' (f � k g; f � k g; r e). The generating function of
the joint cumulants of this special type can be shown to be

' b(f � k g; r e) = 1 + � (r e)b' (f � k g) ; (B6)

with the bias cumulant generating function de�ned as

b' (f � k g) �
nX

i =1

nX

j =1

� ij � j : (B7)

Equations (B5) and (B6) can then be used to express the joint cumu-
lant generating function' (f � k g; f � 0

k g; r e) in terms of the already
known generating function' (f � k g) of cumulants at one point via

' (f � k g; f � 0
k g; r e) =

' (f � k g)+ ' (f � 0
k g) + � (r e) b' (f � k g) b' (f � 0

k g) : (B8)

The bias cumulant generating function,b' (f � k g), is therefore de-
�ned as the sum of the �rst partial derivatives of the initial decay-
rate function and hence closely related to equation (10). The bias
function is then obtained from the bias cumulant generating func-
tion via

b(f � k g) P(f � k g) =
Z Y

k

d� k

2� i
b' (f � k g) exp

 

�
X

k

� k � k + ' (f � k g)

!

: (B9)

Evaluating the integral in equation (B9) using a saddle point ap-
proximation then gives

b(f � k g) � b'

 (

� k =
@	( f � i g)

@�k

)!

=
nX

i;j =1

� ij � i (� i ) :

(B10)

APPENDIX C: WEAKLY NON-GAUSSIAN BIAS

Let us revisit here the origin of the normalization shift discussed in
the main text by looking at the Gaussian and weakly non Gaussian
predictions for the mean density bias.

C1 Kaiser bias

To study one-cell and two-cell bias, we �rst diagonalise the covari-
ance matrix from equation (13), by transforming from� 0

1 ; � 1 ; � 2 set

of correlated variable to the following set of independent variables

� 1 =
� 1

� 11
; � =

� 2
11 � 0

1 � � 11 � 1

� 11

p
� 4

11 � � 2
11

; (C1)

� =
� 11p

� 2
22 � 2

11 � � 4
12 � � 2

�
� 2 �

� 2
12

� 2
11

� 1 �
�

� 11
�
�

; (C2)

which are built to be decorrelated and normalised by their variance:


� 2

1

�
=



� 2 �

=


� 2 �

= 1 ; h� 1 � i = h� 1 � i = h�� i = 0

once� is set to� = ( � 12 � 2
11 � � 11 � 2

12 )=
p

� 4
11 � � 2

11 . Thanks to
the diagonalization(� 1 ; �; � ) now follow a standard normal distri-
bution, such that it is easy to check that the density bias reads

bG (� ) =
h� 0

1(�; � 1)j� 1 = �=� 11 i
� 11

=
�

� 2
11

; (C3)

which is proportional to the initial overdensity� as expected from
(Kaiser 1984). The two-cell density bias also follows as

bG (� 1 ; � 2) =
h� 0

1(�; � 1)j(� 1 ; � 2)i
� 11

�
2X

i;j =1

� ij � j ; (C4)

if we assume that for large separationsr e we have� 12 � � 11 .

C2 Expected offset of density bias

Figure 5 shows that for the non-linear density �eld, the one cell
biasb(� ) is non-vanishing and positive at the mean density� = 1
whereas the Gaussian result from equation (C3) predicts zero bias.
Here we compute this offset using perturbative methods in the
weakly non-Gaussian regime which are expected to be accurate for
variances of order� . 0:2.

We use a moment expansion for the two-cell distribution func-
tion. The Gaussian limit provides the kernel to de�ne the orthogo-
nal polynomials of the expansion (Gay et al. 2012). In the decorre-
lated variables� 1 and� introduced in equation (C1) these are just
products of Hermite polynomials, which for the �rst non-Gaussian
correction to the two-point distribution function give

P(� 1 ; � ) �
1

2�
exp

�
�

� 2
1

2
�

� 2

2

�
(C5)

�
h
1 +

1
6



� 3

1

�
H 3(� 1) +

1
6



� 3 �

H 3(� )

+
1
2



� 1 � 2 �

H 1(� 1)H 2(� ) +
1
2



� 2

1 �
�

H 2(� 1)H 1(� )
i
:

The conditional mean that determines the one-cell bias is

h� 0
1 j� 1 = � i =

Z 1

�1
d� 1

Z 1

�1
d� � 0

1(� 1 ; � )P (� 1 ; � )� D (� 1(� 1 ; � ) � � )
Z 1

�1
d� 1

Z 1

�1
d� P (� 1 ; � )� D (� 1(� 1 ; � ) � � )

where inverting equation (C1) gives

� 1 = � 1 � 11 ; � 0
1 =

� 1 � 11 + �
p

� 4
11 � � 2

11

� 11
: (C6)

After some algebra, and expressing the moments of� 1 ; � back via
the moments of� 1 ; � 0

1 , the one-cell bias at� = �� = 1 in the leading
non-Gaussian order becomes

b(� = 1) �
1
2

�
h� 3

1 i
� 4

11
�

h� 0
1 � 2

1 i
� 2

11 � 11 (r )

�
(C7)

As expected, it is zero forr = 0 . In the large separation limit,
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Figure D1. The residuals of the best �t log normal PDFP (� ) for redshift
z = 0 :7 and radiiR = 10 ; 11; :::; 15Mpc/h (from blue to red)in compari-
son to the measurement from HR4(with error bars). This is to be contrasted
to the quasi perfect match of the saddle PDF presented in Figure 3

the cubic moments can be computed using perturbation theory
(Bernardeau et al. 2002) and give

h� 3
1 i

� 4
11

= S3 �
34
7

� (n + 3) ;
h� 0

1 � 2
1 i

� 2
11 � 11

= C21 �
68
21

�
1
3

(n + 3)

such that the bias offset evaluates to

b(1) �
1
2

(S3 � C21 ) = �
4
21

�
n
3

n = � 1:6
� 0:34; (C8)

a value fully consistent with the measured one.

APPENDIX D: REDSHIFT ZERO MATCH

While we focused our comparison between the theoretical predic-
tions and the HR4 simulation in Section 3 to redshiftz = 0 :7, we
here provide results from high redshiftz = 4 until todayz = 0 to
outline the reach of our formalism.

D1 Saddle point vs. lognormal PDF

The one-cell saddle point PDF presented in equation (23) obtained
from a log-density mapping has to be contrasted to an ad-hoc log-
normal PDF

P lognorm(�; � ) =
1

p
2��

1
�

exp
�
�

(log � + � 2=2)2

2� 2

�
(D1)

with a best �t for the variance� which mis-matches the simulated
PDFs at the 10% level or more in its tail, as shown in Figure D1.
This is to be compared with the excellent match seen in Figure 3.
Note that, while doing a joint �t of the mean (which is otherwise
assumed to be� 2=2) and variance does improve the �t around the
mean density, it worsens the mismatch in the tail.

D2 The density PDF in concentric spheres

In Figure D2 and D3 we show the one-cell PDFs for redshiftsz = 0
andz = 4 comparing the saddle point approximation computed
usingLSSFast with the measurements from the HR4 simulation.
Furthermore we show the two-cell PDF for redshiftz = 0 in Fig-
ure D4. Note that we have chosen to use� = 1 :59 instead of
21=13 � 1:61 at low redshift as the residuals were smaller in

Figure D2. The density PDFP (� ) predicted from equation (23) using
LSSFast (solid lines)for radii R = 10 ; 11; :::; 15Mpc/h (from blue to
red)at redshiftz = 4 with � = 21 =13 in comparison to the HR4 measure-
ment(data points)and the corresponding residuals.

this case. This suggests that in order to get percent precision on
the PDF at low redshift, one probably has to account for next-to-
leading order correction to the skewness (that a slightly lower value
of � seems to reproduce). This is clearly seen atz = 0 when the
numerical integration of the inverse Laplace transform is carried
out and shows residuals proportional to the typical third order Her-
mite polynomial, characteristic of the skewness. Adding higher or-
der corrections to the skewness (by means of perturbation theory)
is left for future work.

D3 Bias functions

D3.1 Density bias

As a complement to Figure 5 that shows the density bias for redshift
z = 0 :7, we show in Figure D5 the corresponding result for red-
shift z = 0 �nding again excellent agreement with the simulation
results.

D3.2 Joint density slope bias

As a complement to Figure 7 that shows the joint density bias for
redshiftz = 0 :7, we show in Figure D6 the corresponding results
for redshiftz = 0 �nding again good agreement with the simula-
tion.
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Figure D3. The density PDFP (� ) predicted from equation (23) using
LSSFast (solid lines)for radii R = 10 ; 11; :::; 15Mpc/h (from blue to
red) at redshiftz = 0 with a slightly adjusted� = 1 :59 in comparison to
the HR4 measurement(data points)and the corresponding residuals.

Figure D4. The joint density-slope PDFP (� 1 ; � 2 ) predicted from equa-
tion (25) for radiiR1;2 = 14 ; 15 Mpc/h at redshiftz = 0 with � = 21 =13
in comparison to the measurement from HR4(thin wiggly lines).

Figure D5. The density bias functionb(� ) predicted from the saddle point
approximation for the log-density� = log � at redshiftz = 0 for different
radii and hence variances as indicated in the legend forns = � 1:6.

Figure D6. A contour plot of the joint density and slope bias func-
tion b(�; s ) predicted from the saddle point approximation equation (29)
with normalization from equation (18) forR1 = 14 Mpc=h and R2 =
15Mpc=h at redshiftz = 0 where� � =0.50, (corresponding to� � = 0 :55),
in comparison to the measurements from HR4 (mean as thick black lines,
and mean� error on the mean as thin black lines).
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