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ABSTRACT

Simple parameter-free analytic bias functions for the two-point correlation of densities in
spheres at large separation are presented. These bias functions generalize the so-called
Kaiser bias to the mildly non-linear regime for arbitrary density contrast§ gs b(1) /

(1 13=21) 1+n=3 with b(1) = 4=21 n=3 for a power-law initial spectrum with in-
dexn . The derivation is carried out in the context of large deviation statistics while relying
on the spherical collapse model. A logarithmic transformation provides a saddle approxima-
tion which is valid for the whole range of densities and shown to be accurate against the 30
Gpc cube state-of-the-art Horizon Run 4 simulation. Special con gurations of two concentric
spheres that allow to identify peaks are employed to obtain the conditional bias and a proxy
to BBKS extrema correlation functions. These analytic bias functions should be used jointly
with extended perturbation theory to predict two-point clustering statistics as they capture the
non-linear regime of structure formation at the percent level down to scales offElidpt=h

at redshiftd. Conversely, the joint statistics also provide us with optimal dark matter two-point
correlation estimates which can be applied either universally to all spheres or to a restricted
set of biased (over- or underdense) pairs. Based on a simple ducial survey, this estimator
is shown to perform ve times better than usual two-point function estimators. Extracting
more information from correlations of different types of objects should prove essential in the
context of upcoming surveys like Euclid, DESI, PFS or LSST.

Key words: cosmology: theory — large-scale structure of Universe — methods: analytical,
numerical

1 INTRODUCTION terest (e.g. Cooray & Sheth 2002, and references therein), as it al-
lows one to investigate how the densest regions of space — where

The large-scale structure of the Universe puts very tight constraints gark halos usually reside — are clustered, which in turn sheds light
on cosmological models. Deep spectroscopic surveys, like Euclid on the so-called biasing between dark matter and halos: as halos
(Laureijs et al. 2011), DESI (Levi et al. 2013), PFS (Takada et al. correspond to peaks of the density eld, they are not a fair tracer of
2014) or LSST (LSST Science Collaboration et al. 2009), will al- that eld. Kaiser (1984) showed that in the high contrast, 1,
low astronomers to study the details of structure formation at dif- large separation limit, the correlation function- , of peaks ly-
ferent epochs, hence to probe cosmic acceleration. Yet, in ordering above this threshold reads
to reach the expected precision on the equation of state of dark
energy, astronomers must address the following challenges: non- - 1)
linear gravitational evolution (Bernardeau et al. 2002), redshift
space distortions (Kaiser 1987; Taruya et al. 2010), bias (Kaiser s that the correlation function of high density regions decreases
1984; Dekel & Rees 1987), intrinsic alignments (Kiessling et al. more slowly than the density eld correlation function,with an
2015) and baryonic physics (Schneider & Teyssier 2015). ampli cation factor orbias that is proportional to the threshold

In this context, two-point clustering has generated a lot of in- squared. This analysis can also be restricted to the peaks of the

1
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density eld above a given threshold following the seminal papers R,
by Bardeen et al. (1986) (hereafter BBKS) and Regos & Szalay “
(1995). For two point functions, the non-linear regime increases the

number of modes used to better constrain cosmological parameters.

Of particular (partially theoretically unexplored) interest is the pos-

! 1,2
|
‘\‘Rl L1

sibility of computing conditional two-point correlations, e.g. two- le

point correlation between regions that have speci ¢ densities, so R, [32
as to provide more robust estimates of the large-distance two-point Rt !y1
correlation.

It has been argued (Bernardeau et al. 2014, 2015; Uhlemann
et al. 2016; Codis et al. 2016) that the statistics of cosmic densi-
ties in concentric spheres can leverage cosmic parameters compet-
itively, as the corresponding spherical symmetry allows for ana-
lytical predictions in the mildly non-linear regime, beyond what is Figure 1. The two-point con guration with two concentric cells of raéi,
commonly achievable via other statistics in the context of pertur- zn4R, in one location (purple) and two other concentric cells of r&dii
bation theory. Indeed, the zero variance limit of the cumulant gen- andR. in another location (red) separated by a distance Rj.
erating functions yields estimates of the joint density probability
distribution function (PDF hereafter) which seems to match simu-

Iaftflonig;g;h%reglmde of Vfggg_cis Ofkf’rd,er unity l(Bfgl'gg_ 8\L/SIcha- the two-point correlation). We will in particular consider the den-
efier » bernaraeau » Juszkiewicz et al. ’ aageassity eld smoothed at two different scales in two concentric spheres

20.0,2; Bernardeau e_t al. 2014, 2015)_' Th's success was Sh‘_’W” Qyhich can be turned into an inner density and a slope (difference
orlglqate from a regime of large deviations at play in the mildly of density between the two spheres). This will allow us to focus
non-linear evolution of the large-scale structure (Bernardeau & Re- on the conditional density-given-slope bias as a quasi-linear proxy

imberg 20_15)' . ) ) . for the BBKS peak correlation function. These bias functions gen-
The aim of this paper is to show that the spherically-symmetric g 5jize the so-called Kaiser linear bias in the mildly non-linear
fra_mework V_Vh'Ch led to surprisingly a_ccurate predictions f_or one- regime for large separations and arbitrary density contrasts. Hence
point statistics also accommodates, in the large separation limit, se nrovide alternative ways of using gravitational clustering to
analytic estimates of the two-point statistics and in particular of probe our cosmological model, in particular using speci ¢ regions
the bias fgctor as_s_ociated with impos_ed constraints within concen- space (underdense/overdense, smallibig slope, etc). Leveraging
tric cosmic d¢n§|t|es. Recently, C_od_ls et al. (2916a) studied the . jitionals on the value of the density at the legs of the correla-
two-pplnt statlstlcs of the density within concentric spheres, WhOSE tions will allow for a more robust estimate of the two-point corre-
redshift evolution was shown to be accurately predicted by large- lation function. We will illustrate on a ducial experiment how the

deviations theory in the mildly non-linear regime, but relied on nu- o ent formalism can be used to estimate optimally the underlying
merical integration of highly oscillating complex functions and was top-hat Itered correlation function.

therefore subject tq _possi_bly signi cant numerical errors, in partic- This paper is organized as follows. Section 2 presents brie y
ular for large densm_es. Slncg Uhl_emann et al. (2016) showed that the implementation of a large deviation principle on the joint statis-
very accurate analytic approximations could be found for one-point ;e of concentric cells based on a saddle point approximation. Sec-
Stat'St'C_s by using a Iog_arlthmlc tr_ansform of the dens!ty e_Id and tion 3 compares these analytic predictions to the state-of-the-art
performing a saddle-point approximation, we propose in this paper yar, matter simulation Horizon Run 4 (HR4). Section 4 demon-

to extend the use of the logarithmic transform to two-point statis- gt ates how to measure optimally the dark matter correlation func-
es. . ) ) tion on a given survey. Finally, Section 5 wraps up. Appendix A
It was showr_1 in Codis et al. (2016b) that the onejpomt PDF shortly describes the accompanying packagSFast for the

can be fully predicted, modulo one parameter, the variance of the g\ 5juation of the one-cell PDF and the bias functions. Appendix B
density eld, which is the driving parameter of the theory, leading  rgyiews the formalism of large deviations relevant to obtain the den-
to two options: i) higher order perturbation theory can be used to sity PDF for concentric spheres and the joint PDF at large separa-
predict the value of this variance as a function of scale and redshift tions. Appendix C provides a description of bias functions in the
in order to recover the full PDF or ii) this one parameter model G, ssjan and weakly non-Gaussian regime based on perturbation

can be used to build optimal likelihood estimators for the variance theory. Appendix D provides a validation of HR4 at redshift 4
based on the measurement of densities in spheres. Conversely, i'?ogether with extended results for redshitt 0 .

the present paper, modulo the unknown underlying two-point cor-
relation function of the dark matter density eld, we will show that
the same large-deviations formalism provides us with the full statis-
tics of the two-point PDF of the density within concentric spheres
separated by a distance. Once again, one can i) rely on perturba-
tion theory to predict the underlying dark matter correlation func- Appendix B presents rapidly the general formalism for deriving the
tion (e.g. Taruya et al. 2012), or ii) build, from the present theory, PDF and the bias functions from the large deviation principle. Let
optimal estimators for the dark matter correlation function to be us in the main text focus on presenting directly the corresponding
applied to measured density in separated spheres. fully analytical predictions, relying on the so-called saddle point
In this paper, following Bernardeau (1996), the focus will be approximation. For that purpose, we shall see that all that is needed
on predicting analytically the density two-point statistics for con- is the so-called decay-rate function (controlling the exponential de-
gurations shown in Figure 1 and speci cally the corresponding cay of the probablity distribution with the density at leading or-
bias functions (the aforementioned density-dependent scalings ofder), the key quantity that connects the (Gaussian) initial to the

2 LARGE DEVIATIONS AND SEPARATION
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non-Gaussian nal distribution brought about by non-linear gravi- For spherical symmetry, one can then take advantage of the fact

tational clustering. that non-linear solutions to the gravitational dynamics are known
In this section we will determine the PDF of densitieslia- explicitly in terms of the spherical collapse model.
tant spherebased on large deviation statistics and the saddle point Let us denote sc( ) the non-linear transform of an initial

approximation. This approximation has proven successful already uctuation with linear density contrast,, in a sphere of radius,

to predict the one- and two-cell PDF for densitiescmncentric to the nal density (in units of the average density) in a sphere of
spheresn Uhlemann et al. (2016). After introducing the two-point  radiusR according to the spherical collapse model

PDF and the bias functions in Section 2.1 and the spherical col- . 3 3

lapse model as the mapping for large deviation statistics in Sec- = sc(): with  R™=r7 )
tion 2.2, we shortly review results for the one-point PDF in Sec- here the initial and nal radii are connected through mass conser-
tion 2.3 and nally extend them to the two-point PDF of densities yation. An explicit possible tfor sc( ) is given by

at large separations, hence the bias functions in Sectioch P

joint knowledge of the PDF and the bias functions enables us to sc()=1 =) ; (5)
compute constrained bias functions which are of particular interest

A ; where can be adjusted to the actual values of the cosmological
for the clustering of over- and underdense regions.

parameters ( = 21 =13 provides a good description of the spheri-
cal dynamics for an Einstein-de Sitter background for the range of
2.1 De nition of the bias functions values of interest).

Thanks to this analytic spherical collapse model, the one-point
Let us consider two sets dfl concentric spheres separated by ppF and bias functions of cosmic densities in concentric spheres,
a distancee and de ne the corresponding densities g1 ke n brought about by non-linear gravitational evolution, can be pre-

andf {gisken - Following Bernardeau (1996) and Codis et al.  gicted explicitly from the given (Gaussian) initial conditions.
(2016a), the joint PDF of these densiti®(f «g:f {g;re), can

be predicted from the one-point PDPf g), P(f g) and the

correlation function of densities in spheres at nite separation 2.3 The density PDF in the large deviation regime
P(f xaif Rgire) = P(f «@P(f Rg) 1+ (f «gif Rgire) 2.3.1 PDF and decay-rate function for an initial Gaussian eld
(2a)

The principles of large deviation statistics yields a formula for the
PDF of nding a certain density in a sphere given the initial con-
ditions. The decay-rate function encodes the exponential decay of
the PDF. For Gaussian initial conditions, which we assume here,

where the sphere correlation function(f «g;f 2g;re), at large
separations. Rk can be related to the underlying (unbiased)
top-hat smoothed dark matter two-point correlation functi@m)

via the effective bias functiongf «g) andb(f 2g):

V n
u — .
(f kg:f Rgire)= (re)BXf «@W(f Lg):  (2b) - p N oexp M)
Pfrkg(f kg) = det N=2 , (6)
This is the count-in-cell analog of the so-called peak background @ @ )

split and de nes the bias factdf ~«g). Physically, this bias en-
codes the mean density in a sphere given that the densities in
spheres of radii Ri g at large separation. aref " g

the initial decay-rate function is given by the usual quadratic form

in the initial density contrasts

) - 1 X

1+ B(fAQ) (re)= h % Ag;rei; (3) freo(f k9 = > i (Ffre@) i g ™
01 d % (f NG 0; re) 0 . i

P(f Q) ' where j is the inverse of the initial covariance matrix; =

2 . . L
which follows from (2a) by integration and normalization of the (Ri;R;), encoding a_II dependency with respect to the initial
power spectrum according to

PDFs. In the following, we will describe how this bias function, 7

and hence the joint density PDF at large separation can be predicted ) ek i
analytically. i @) P (k)Wsp (kRi)Wsp (kR ) ; ®)

whereWsp is the Fourier transform of the top-hat Iter
2.2 Large deviation statistics with spherical collapse 3
When considering a highly symmetric observable such as the Wao (k) = k7(5|n(k):k cosf)) : ©)
density in spheres, one can argue that the most likely dynamics Note that equation (6) is an unusual rewrite of a Gaussian distribu-
(amongst all possible mappings between the initial and nal den- yjon emphasizing the central role of the rate function (7). This rate
sity eld) is the one respecting the symmetry (Valageas 2602). fynction has a straightforward explicit expression in terms of the

underlying covariances hence the initial power spectrum.

1 Note that, by constructing PDFs for densities in a larger number of con-

centric spheres in special con gurations, such as three spheres, with a cen- ) .

tral density within the inner sphere and a second density within a given 2-3.2 Saddle-point PDF for an evolved non-Gaussian eld
outer shell, one could build correlators for arbitrary separation. This will be
the topic of upcoming investigations.

2 This is a result of the so-called contraction principle in the context of
large deviation theory as explained in Bernardeau & Reimberg (2015), 1 X 1=3 )

which formalizes the idea that amongst all unlikely fates (in the tail of the treg(f k0) = 2 i (FRe 79) (i) i(4)s (10)
PDF) the least unlikely one (spherical collapse) dominates. i

The nal decay-rate function is obtained from re-expressing the
initial decay-rate function in terms of the nal densities
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using the spherical collapse mapping characterized by equation (5).in section 2.4.1. The subsequent quasi-linear evolution can then be
The previously known result for the PDF of densities in concentric predicted by the large-deviations principle as will be shown in sec-
sphered (f «g) at one point is given by tion 2.4.2.
s
@ irg ©XP ireo(f Q) |
@@ (2 )N=2 '
where is given by equation (10). The saddle point approximation Let us consider a set of density contréstsg in concentric spheres

provides a very good approximation to the exact result from large- of radii Rx and the contrast’ in a sphere of radiug; at a distance
deviations statistics, as discussed in Appendix B, if the nal decay- re away from the center of the concentric spheres. If the density

Pir.g(f kg)= det (11)

2.4.1 Kaiser bias for an initial Gaussian eld

rate function is convex, i.e. eld is Gaussian, the covariance matrix @ «g; ) simply reads
@ fR 2 )
det ———*% >0; C-= it 13
@@, TR (13)

which simplies to 8] ] > 0 for the one-cell case. However,  \yhere we use the short hand notatigh= %(Ri;R;)and j =
as has been shown in Bernardeau et al. (2014), this condition is (R, R, :r,) with
only ful lled below a critical value . where 2 ] = 0 in the z
one-cell case, and similarly insideMa 1 manifold for theN - _ lin .
' i = P™ (K)W3zp (kRi)Ws3p (kR ) exp({kre cos ):
cell case. The main point of Uhlemann et al. (2016) is that this " (2 )3 (k)Wao (kRi)Wao (kR;) exp({kre )
dif culty can be aI.Ievw!ted W't,h an adequate change of var!ables In the Gaussian case the bias function can be computed analytically,
such as the logarithmic density transform. The procedure is then for example by diagonalizing the covariance matrix by a change

to apply the saddle-point approximation to predict the PDF of the of variables as shown in Appendix C. The result for the one-cell
(logarithmically) mapped density eld as density bias is
s

d’k

P.ir.g(f k@)= det

@ 1rg €XP fReg . hyi
;o (12 C = 1 = -
@ Q@ (2 )N=2 (122) () 1 i’ 4

where the transformatioh g ! f g has to be chosen to en-  which is proportional to the initial overdensityas expected from
sure the convexity of the decay-rate function. This result can then (Kaiser 1984). Thé\ -cell density bias follows as
easily be translated in the PDF of the density eld via a change of

. o )(\1 )(\I @ ini f
variables B (f vg) = i (risrg) = 7”%( <) ;. (15)
; i = i = j
Pireo(f k9 = Piiryolf «(f i0)g] det % ; (12Db) v =
) if we assume that for large separations Rk the cross-
where the Hessian of the decay rate functigr, 4 after a change correlations are all approximately identical 11 8i. In gen-
of variables «g!f «gis trivially given by eral, the Kaiser bias function is given in terms of the derivative

of the decay-rate function of the initial PDF¢,, ¢(f «g) =

log P, ¢(f «g) and hence the rate of decay of the PDF. This
encodes the idea that unlikely con gurations, corresponding to
strongly positive or negative values of the initial density contrast
2.3.3 Ensuring normalization are more biased.

@@ @ @@ @ @@ @«

@ trg_ @« @ rg @ + @ « @kag:

Equation (12) assumes that the mean pfdoes not depend on

th_e variance_and vanishes. Fpr a generic non_—Iinear mapping, ity 4 o Saddle-point bias for an evolved non-Gaussian eld

will translate into a mean density which can deviate from one as . o . ]

grows. In order to avoid this effect, one has to consider the shifted The saddle point approximation of the bias function amounts to

PDE mapping the initial Kaiser bias function, equation (15), using the
. inverse spherical collapse dynamics from equation (5)
Iﬂ;kag(f kg) = P:kag(f~k= k h «ig); (12¢) o
with the shiftsh i chosen such that the resulting mean densities b(f «g) = i (Ri TR () (16)
areonehiji = 18i =1; ;n. Furthermore, since the saddle- i =1

point method yields only an approximation to the exact PDF, the
PDF obtained from equation (12) is not necessarily properly nor-
malized. In practice, this can be accounted for by considering

The spherical collapse can be shown to be the leading order contri-
bution for the statistics of densities in distant sphere, as was done
for the one-point PDE This saddle point approximation is valid in
Pr(f «g)= Pr(f «g)=hli; (12d) the large separation regime and as long as the PDF of the density
with the shorthand notatiodi = Q ) 01 d« Pr(f «g). lcan b_e ob_tained viaa sgddle point_approximation. Iq as much as the
ogarithmic transform signi cantly increases the region of applica-
bility of the saddle point approximation for the PDF, it also yields
2.4 The bias functions at large separations analytical bias functions. Using this saddle point approximation we

The saddle point approximation applies also to the joint density

PDF atlarge separation and hence the bias function de ned in equa-3 More precisely, the analytical asymptote of the bias function can be de-
tion (3). Since initially, the eld is Gaussian, the initial bias func-  rived using a steepest descent method in equations (B4) and (B9), see Ap-
tion is exactly given by the so-called Kaiser linear bias as described pendix B
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therefore extend the results of Codis et al. (2016b) and present ana-
lytical predictions that do not require a numerical integration in the
complex plane; we also provide predictions for the joint and con-
strained biases based on analytical predictions of 2-cell quantities
which were not easily accessible before.

2.4.3 Ensuring normalization

Because of the normalisation of the density and joint density PDFs
and the de nition of the sphere correlation function, the bias func-

tion must obey the following two relations
VA

y Z1

ho(f «g)i = d«P(f «g)f «0)=0; 7
VES

hib(f «g)i = d«B(f vg)b(f «g) i =1:;8i=1;::n:
K O

Because of these properties the bias functiph g) obtained
from equation (16) still have to be normalized according to

YT L. Gt BLL. G PP

n = (Db g)i h B «g)i) Figure 2. A thin (1.5 Mpc=h) slice through the HR4 simulation at redshift
This normalization procedure is necessary and can be understood- The simulation is 3150 Mpth across sampled b§300° dark matter
easily: while the conditions (18) are trivially ful lled for a purely ~ Particles.

Gaussian initial eld with small variance and Kaiser bias (15), the

bias will pick up corrections from non-Gaussianity via gravitational i, 4 Hubble-like volume. It was run on the Tachyon-2 system at Ko-

collapse. Those corrections modify the value of the bias at average e, |nstitute of Science and Technology Information to study of the
density (and hence the mean bias and mean density-weighted bias),qnjinear matter evolution usiny, = 6300° particles in a cu-

and become manifest already in the very mildly non-Gaussian (and pi hox with a side length of 3156 “Mpc. The particle mass is
hence perturbative) regime as shown in Appendix C. Those non- aboutm, * 9:0 10° h M . The adopted cosmology is com-
Gaussian corrections that affect the mean are not accounted for i“parable with the WMAP 5 year CDM model. with s = 0:794
the saddle point approximation used in this work. To correct for this 4 matter, baryonic matter, and dark energy density parameters
effect, we choose to shift the non-perturbative result from spherical ¢ mo = 0:26, po = 0:044 and .o = 0:74, respectively.
collapse dynamics at the end according to the nonzero mean biasre initial conditions were generated iit = 100 according to
and will show that it leads to accurate predictions that are robust i second-order Lagrangian Perturbation Theory (2LPT; Jenkins
to variances of order one. Furthermore, extrapolating the saddle >o00). The gravitational force on each particle was calculated us-
point approximation to nite variances requires to adjust the ab- ing the PM-Tree method by the GOTPM (Dubinski et al. 2004)
solute normalization connected to the mean density-weighted bias.qqown toz = 0 in 2000 global time steps, see Figure 2. The force
resolution is 0.08 *Mpc, i.e. 1/10 of the mean particle separation.
To enhance the positional accuracy of particles, we adopt the
3 VALIDATION WITH THE HR4 SIMULATION shift vector rathe.r than.the position vector for partilee infqrmation.
) _ o In such a huge simulation like HR4, the 32-bit oating-point accu-
Let us now evaluate the simple analytical predictions for the den- racy has a round-off error around sub-% level in terms of the mean
sity PDF in concentric spheres, equation (11), together with the bias particle separation, and a large time-step evolution may accumulate
functions at large separations, equation (16), and compare them tosych errors and may affect the nal matter distributions. Without
measurements in the HR4 simulation presented in Section 3.1. ThErequesting any more memory space, we devised a trick using the
estimators for the measurements of the bias functions are describegarticle index as the Lagrangian position and the shift vector to cal-
in Section 3.2 while the parametrization for the correlation function cylate the particle position. For more details about the simulation

is given in Section 3.3. For brevity, we will focus our comparisonin - and methods adopted by the GOTPM, see Kim et al. (2015).
the main text to redshift = 0:7, which is in the redshift range that

is most interesting to current surveys, while resultszferO0 and a
validation at high redshift = 4 are shown in Appendix D. We will 3.2 Measuring the bias functions
validate our analytical results in Section 3.4 against the HR4 mea-
surements, then present conditional bias function in Section 3.5 and
discuss the modulation of the matter correlation function induced

by biasing in Section 3.6.

To measure the bias functions we will make use of equa-
tions (26), (28), (31) and (32). In practice, we determine the val-
ues of the PDFs in bins of a certain width around the given value
by counting the number of densities in a given bin using stepwise
functions. The HR4 simulation density is estimated via dark mat-
ter count-in-cell in252° cells separated by2:5Mpc=h. We use
spheres of radiR = 10; 11;12; 13; 14; 15 Mpc=h with a separa-
The Horizon Run 4 (HR4) simulation (Kim et al. 2015) is a state- tionre = 37 :5Mpc=h which is big enough to ensure that we are in
of-the-art dark matter simulation modelling gravitational clustering the large separation regime, see Codis et al. (2016a).

3.1 The Horizon-Run 4 simulation
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Correlation function We measure the sphere correlation function _ 2 || R[Mpc/h] | 10 | 11 | 12 | 13 | 14 | 15

at distance . according to 4:0 AoA 0.18 | 0.17 | 0.16 | 0.15 | 0.14 | 0.13
Py Po 0:7 A 051 | 047 | 0.44 | 0.41 | 0.39 | 0.37
I T -
/\(re) - I=1 i=1 Kl 1: (19) 0:7 n 0.46 | 043 | 041 | 0.39 | 0.37 | 0.35
6N, 0:0 A 0.74 | 068 | 0.63 | 0.59 | 0.55 | 0.52
In practice, we count all pairs of spheres only once when computing  %:0 " 0.61 | 0.58 | 0.55 | 0.52 | 0.50 | 0.48
Ay . . .
(re) by only considering three neighbours for each sphere. Table 1. Variances of the density and the log-density = log for dif-

ferent radiiR and redshiftz as measured from the HR4 simulation.
Density bias The density bias is estimated using the cross-

correlations of spheres with radil® de ned in equation (26). Where

More precisely, we compute a sum over each sphewih den- Z
sity | and its 6 neighbours at distancelabelled with the indices d*k k" Wap (kx)Wap (ky)
j forl6 )66 " G(x;y;n) = £
"P P 3
1, =BG N6 =2 d°k k" Wap (kRp)Wap (kRp)
b= 3 e 1 (20
6 BG: N6 =2 C(x+y) XP+y? oxy (Y X) XP+y?+ xy
whereB is a boolean function which evaluates to one if the density 2 (n+1)x3y3 ’
isin abin centred ot withwidth = 0:1. Note thatthe density ~ with =1 n. The key parameter in the prediction of the PDF

bias can also be measured using auto-correlations which has beef the value of the variance at the pivot scRlgwhich we measure
shown to giVe results consistent with CrOSS'CorrelationS, see Codisin the simulation and use as an inpu’[ to our theoretical model. We
etal. (2016a). report the results for the measured variance of both the density

and the log-density =log in Table 1.
Joint density slope biasIn order to measure the slope bias in the

simulation, we consider the set of concentric spheres with radii

Ri-, such thatR, R; = 1Mpc =h. Following equation (28), ~ 3-4 The density PDF in concentric spheres
we compute again a sum over eachlsatd its 6 neighbouring sets o the predictions of the one- and two-cell PDF of the density-in-
at distance e labelled with the indices; for16 j 6 6 spheres we use equation (12) specialized to an appropriate logarith-
1 B(j 1 N6 =2js 46 s=2) mic mapping that provides a wide range of applicability for the sad-
" 9= A6 B( N6 =2js §6 s=2) — 1 dle point approximation. Note that the functional forms were pre-
1 BU J =5l ) h sented in Uhlemann et al. (2016) and compared to measurements
B is a boolean function which evaluates to one if the density is in from a 500 Mpeh Gadget2 simulation (Springel 2005) sampled
a bin centred or®* with width = 0:2 and the slope isin a bin  with 1024 particles. Here, we confront them with the signi cantly
centred org with width s =0:02R;. more accurate measurements from the HR4 simulation at redshift
z = 0:7; the results foz = 0 are shown in Appendix D.

Constrained density bias given environmentFrom the joint bias
o_f thg den_sny and slo_pe one can also det(_armlne a con_s_tralned den:,(,).4.l One-cell density PDF
sity bias given an environment either speci ed by a positive or neg-
ative slope For the one-cell PDF the appropriate mapping leading to an accu-
"p ) o . .
|;bB(j . M6 =2570) rate density PDF is simply the logarithm of the density,

A _1 }
Brjs7 0= 3 5 BG M6 =zs70) o =log : (22)

or an over- or underdense shelb=(R3 » R? 1)=(R} R?) The density PDF is then obtained as

P LBl N6 =2 T, T+ o
BN 127 1)= - Lp . - v 12 ER Pr( )= z—exp( R[] : (23a)
6 |B(j | J6 :2; 12;|71)

) o ) The normalized PDF with the corrected mean is obtained from

which are both measured with bins of width =0:1. equation (23a) according to
_ hi hi |

3.3 Parametrizing the covariance matrix Pr( )= Pr i  hiz: (23b)
In order to determine the decay-rate function, the joint PDFs and In Figure 3 we compare the saddle point approximations of
hence also the bias functions, one needs to compute the covariancehe PDF obtained from equation (23) evaluated with the help of
matrix between initial densities in spheres of reldii andR; as LSSFast (Codis et al. 2016, see also Appendix A) to the mea-

de ned in equation (8). For the sake of simplicity, we choose here surements from the HR4 measurement for 6 different iRdi
to parametrize this covariance matrix in analogy to a power-law 10; 11;:::; 15Mpc/h at redshiftz = 0:7. The agreement is spectac-

initial spectrum with spectral index = n(R;) by ular over a wide range of densities.
2> py— 2 R "R S
(RizRi) = “(Rp) R, ‘ (212) 3.4.2 Two-cell joint density slope PDF

2(Ri;Rj )= %(Rp)G & & n(Rp) ; (21b) A suitable and physically motivated change of variables for the
Rp Rp two-cell case is given by the logarithmic transform of the sum and
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Figure 3. The density PDRP ( ) (left-hand panelpredicted from the saddle point approximation equation (23) usB@Fast (solid lines)for redshift

z = 0:7 and radiiR = 10; 11, :::; 15Mpc/h (from blue to red)with variances as given in Table 1, in comparison to the measurement fronfddRdpoints

with error bars)and the corresponding residuéight-hand panel) See also Figure D3 for lower redshift PDFs. For this gure, we usedl :59 instead of
=21=13" 1:61because it leads to smaller residuals (see Appendix (D)).

difference of mass
1=log r® 2+ 15 2=log r*, 1 (29

where the relative shell thicknessris= R,=R; and mass con-
servation ensures; to be real. The PDP( 1; 2) can then be
approximated via equation (12), which can explicitly be rewritten

as
ex R, P —
Prums( 11 2)= SPL Rl 5 ETET esa)
with
. 2
Prir,( 1; 2) =det @é@%@?z det %}' (25b)
1 r3 2+ r3 1
= = ot ot — g+ e
o3 22 2t 5o 3,4
1 L0 o
o3 22 2t 5o 3, )

3 2
122 r~ .u

2r3 2 ;

with .1 and ., denoting partial derivatives with regard ta
and » respectively. Analogously to the one cell case, one still has Figyre 4. The joint density-slope PDP( 1; ) predicted from the saddle
to enforce the mean and normalization for the saddle point PDF point approximation equation (2%hick lines)as a function of the central
obtained from equation (25) following the procedure described in density 1 and the shell density;, for radii R1.> = 14 ;15 Mpc/h and
equations (12c)-(12d). In practice, it is often useful to express the redshiftz = 0:7where = 0:37in comparison to the measurement from
joint density PDFP( 1] 2) not in terms of the two densities but HRA4 (thin wiggly lines) The agreement is quite good and demonstrates the
rather as function of the inner density = 1 and the slope wide dynamigal range of this simulation. See also Figure D3 for the same
s=(2 1)=R.=Ry 1) or the density in the outer shell ~ PDFatredshifz =0.

12=(R¥ 2 R} )=(R} RY).Theresultis displayed in Fig-
ure 4 and compared to the measurements. Overall we observe &g jnpyt together with the normalization procedure described in
very good agreement; it is however not as good as for the one-cell g ation (18). While the functional form of the density bias was
case as we did not compute it with the exact linear power spectrgm introduced already in Bernardeau (1996) for the saddle point ap-
but assumed a power-law power spectrum through the parametrizaproximation applied to the density, we provide improved analyti-
tion (21). It was shown in Bernardeau et al. (2014) that taking into predictions based on the log-density mapping together with a
account the running of the spectral index can improve the result. o malization scheme that are as good as results from a numeri-
cal integration presented in Codis et al. (2016a). Furthermore, we
provide new predictions for the joint density bias and the derived
constrained biases given the density environment. Here, joint den-
To predict the bias functions for densities-in-spheres, we will use sity bias refers to the biab( 1; 2), corresponding to a region of
equation (16) with the variance of the log-density from Table 1 density ; smoothed ofiR; and , onR5.

3.5 The bias functions at large separation
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3.5.1 One-cell density bias

The density bias describes the cross-correlation of spherical cells
given one spherically-averaged density at separation
z

1
d%P(; %re) ©

P()
Physically the density bias describes the mean of the density found
in a sphere of radiuR given that the density in a sphere of the
same radius at separatiognis .

The density bias can be straightforwardly obtained from the
saddle point approximation for the log-density= log by eval-
uating equation (16) for a givenin a cell of radiusR as

1+0() (re)=h9 srei = (26)

(1 1= ) (1 1= ) 3+ n(R)
br( )= = (27a) . . B . .
2(R 1739) 2(R) Figure 5. The normalized density bias functifia ( ) predicted from the
and then normalizing according to saddle point approximation given by equation (27) for the log-density
log forns = 1:6 and different values of the variance. This prediction
[C\)R( )= br() hbs()i (27b) is compared to the HR4 measurements at redghift 0:7 for different

radii R in Mpc/h and hence variances as indicated in the legend. See also
Figure D5 for redshifz = 0 .

hbr( )i h be( )i

where the averages denoted oy are computed as integrals with

the one-cell saddle point PDF equation (23). The result is plotted in

Figure 5 for redshifz = 0:7 and radiiR = 10; 12; 14 Mpc=h with

variances as indicated in the legend. In Figure D6 in Appendix D

we also show redshift = 0. One can see that unbiased results

are obtained for densities close to the mean density, but note that

the bias at the mean density is not exactly zero, as explained in

Appendix C on the basis of perturbation theory. The amplitude of

the bias grows with the deviation from the background density and

is, as expected, positive for overdense and negative for underdense

regions. We can clearly see that the saddle point bias functions pre-

dict a deviation from the linear growth of Kaiser bias from equa-

tion (14) and are in excellent agreement with the measurements; the

normalization procedure (18) correctly captures the nite value of

the bias at mean density. In Figure 6, we show that the prediction of

equation (27), which relies on large deviation statistics and spher-

ical collapse, extends the classical Kaiser bias result from equa-

tion (14) valid in the Gaussian and hence linear regime towards the

non-Gaussian, mildly nonlinear regime. Hence we obtain correc- Figure 6. Density biash( ) from equation (27)blue line)predicted from
tions to the linear growth of the bias with density contrast: we ob- the saddle approximation for = 0:50 and spectral inders =  1:5 and
serve that the bias for underdense regions is signi cantly enhancedcompared with the Kaiser bias from equation (§5)rple line)valid only
because in the non-Gaussian regime the sharp cutoff at zero denin the Gaussian regime but extrapolated here into the non-Gaussian regime.
sity becomes apparent which suppresses the rare-event tail further

and disfavours very small densities. In turn, the bias for overdense

regions is suppressed because the gravitational evolution bends théained from the general formula (16)

rare-event tail upwards and therefore favours large overdensities. 2
bryr,( 17 2) = i RGOSR @) @)
3.5.2  Joint density-slope bias W=t

where the covariance matrix is given by equation (8) and can be

The two-cell bias is given by parametrized by equation (21) for a power-law initial spectrum.

1+b( 1; 2) (re)= h%( 1; 2);rei (28) We can again use the variables describing the inner density-
140 . a0 0 gether with the slops = ( » 1)=(R2=R; 1) or the den-
o dOP(f 1 20 %re) o 3 3 3 3
= ST ; sity in the outer shell12 = (R5 2 Rji 1)=(R5 Rj%). The
(1 2) result, normalized according to equation (18), is shown for radii
whereP (f 1; 2g; %re) is a marginal of the two-cell PDF R1.2 = 14;15Mpc=h at redshiftz = 0:7 in Figure 7 (and at red-

P(f 1 0 o, )= R, d9P(f 1: »g:f © 9gire): shift z = 0 in Figure D6). Besides the general trend that the bias
120 hfe o -~ 2 122Gt 5 20 Te) increases with increasing over- or underdensity, one can see that
The joint density and slope bias describes the mean of the den-unbiased results are obtained along the green line for which either
sity found in a sphere of radilR = R; given that at a distance  both densities are close to the background density or the over- or
re, the densities in spheres of radtiy, and R, are respectively underdensity of the central density is roughly counterbalanced by
(™1;72). The result, before normalization, is straightforwardly ob- a under- or overdense shell, respectively. Again we nd a devia-



Non-linear two-point statistics of cosmic densities9

Figure 7. A contour plot of the joint density and slope bias function
b( 1; 2) predicted from the saddle approximation equation (29) with nor-
malization from equation (18) as a function of the central densitand

the shell density 12 for R1 = 14 Mpc=h andR, = 15 Mpc=h at redshift

z = 0:7where =0.37 (corresponding to = 0:39) in comparison to
the measurements from HR4 (mean as thick black lines, and mearor

on the mean as thin black lines). Shown is also the stationary }ifie;)
(purple line) along which the joint bias function has to be evaluated to ob-
tain the density biab( 1) = b( 1; 2( 1)). The green line corresponds to
zero bias.

Figure 8. The constrained density bias function for negative slopes
b( 1j 2 < 1) (red line)and positive slopeb( 1j 2 > 1) (green line)
compared to the unconstrained density lias) (blue line)which agrees
with the density bias from the one-cell saddle point approximatiqn)
(purple line)shown in Figure 5. The coloured spheres, where darker color
tion from the linear growth predicted by the linear bias described indicates higher density, sketched in the inset illustrate the different cases
in equation (15) and good agreement with the measurements. considered for the correspondingly coloured lines in the plot. All results are
Consistency chechiote that by decimation of variables we obtained from the saddle point approximation for the log-density for radii
. . . . R1 = 14 Mpc=h andR, = 15 Mpc=h at redshiftz = 0:7 with variance
can obtain the one-cell density bibs 1) from the joint two-cell _ . ;
. . ) . . . =0.37. Once again the agreement is excellent.
density biasb( 1; 2) by evaluating it along the stationary line
$@( 1) of the decay-rate function (shown as purple line in Fig-

ure 7) as PDF wherb =1 and we have that
@ sta _ (b P) 12< 1) (bP) 42> 1),
0= — = : : 30 = + ; 31b
@2 o= $9( 1) ) BCa)= B 270 0) (30) o) P( 1) P( 1) ( )
which indeed gives back the density bias shown in Figure 5. where we de ne the constrained bias as
Constrained bias given environmef@iven that we have the B 1j 2?7 1)= (b P)(1j 2?7 1), (31¢)
full knowledge of the two-cell bias function we can now determine ’ P(1 2?2 1)

two constrained quantities: the density bias in a positive or negative Hence, we can easily compare the constrained bias function to its
slope environmert( 1j » ? 1) as well as the bias in an over-or  ynconstrained analogue. This is done in Figure 8. A positive slope
underdense she( 1j 12 ? 1). increases the bias for all densities with a strength growing with
the central density, while a negative slope has the opposite effect.
Because a mean central density with a negative or positive slope
will appear as overall under- or overdense, respectively, the value
The constrained bias for the densityiven a positive or negative  of the bias at mean density and the point of vanishing bias ap-
slopes can be obtained from pear shifted. An intuition about this shift can be gained from a

Z, peak-background split argument by computing the mean density

(bP) 1 2?7 1)= do(MbP) 1; 2) ( (2 1)); (31a) given positive or negative slope which yieldsj »> 1i =1:15
0 andh 1j » < 1i = 0:85, respectively. The constrained density

where is the Heaviside step function. Note that apart from nor- bias given slope provides us with a proxy for peaks in the spirit
malization this equation resembles the de nition of the constrained of BBKS, which correspond to overdensities with negative slope

3.5.3 Density bias in a positive or negative slope environment



10 C. Uhlemann, S. Codis, J. Kim, C. Pichon et al.

Figure 9. The constrained effective density bias function in underdense
shellsb( 1j 12 < 1) (red line)and overdense shelt§ 1j 12 > 1) (green
line) compared to the unconstrained density ligas, ) (blue line) All re-
sults are obtained from the saddle point approximation for log-density with
radii Ry = 14Mpc=h andR2 = 15Mpc=h at redshiftz = 0:7 with

the variance =0.37. The agreement is quite good so long as the PDF is
signi cantly non zero.

(peaks) and underdensities with positive slope (voids), respectively.
Those con gurations also give the asymptotes of the density bias

for extreme densities, because large strongly under- or overdens
regions will mostly have positive or negative slopes, respectively,
which causes one contribution from equation (31b) to dominate in
the regime of extreme densities. Note that, while BBKS determine
peaks in the initial Gaussian eld and then apply collapse crite-

ria based on spherical collapse, we here use spherical collapse t
predict the nal non-Gaussian statistics of densities-in-spheres and

use special con gurations to get a proxy to peaks in the nal eld.
It is worth nothing that our formalism describes large peaks of the
density eld in a similar (but not equivalent) fashion as peak bias
studies do following the de nition introduced in BBKS (see e.g

Desjacques et al. (2010)). Those two different approaches give a

complementary insight on halo biasing, either by focusing on over-
dense regions with negative slopes in the mildly non-linear regime
(this work) or on the maxima of the Gaussian Lagrangian density
eld (BBKS).

3.5.4 Density bias in an over- or underdense shell

The constrained bias for the central densitgiven an over- or
underdense shell with density> = (R3 » R} 1)=(R3 R3J)

e

(0]

can be obtained from

1
(bP)Y( 1) 12?2 1)= d 12 (bP)( 1; 12) ( ( 12 1)); (32a)
0

such that
(b P)( 1 2<1) (b P)( 1j 12>1),
= © (32b
X0 P(1) P( 1) (32b)
where we de ne the effective constrained bias to be
; b P j 12?71
t( 1) 12 ? 1) = M : (32C)

P( 1 12?1)

The results are shown in Figure 9 where we see that the constrained
density bias given an underdense- or overdense environment gives
the asymptote of the density bias for small and large densities, re-
spectively. This is due to the fact that large, strongly under- or over-
dense regions will mostly have under- or overdense environment,
respectively, which causes one contribution from equation (32b)
to dominate in the regime of extreme densities. The interesting
regime is where the constrained biases deviate from the averaged
bias which is when we nd an overdensity residing inside an un-
derdensity (red line in the half where > 1) or vice versa an
underdensity residing inside an overdensity (green line in the half
where 1 < 1). In this speci ¢ con guration, over- and underden-
sities are not only peaks, but even isolated, such that we can think
of them as voids surrounded by walls or clusters surrounded by
voids. Because a mean central density with a surrounding under-
or overdense shell will appear as overall under- or overdense, re-
spectively, the value of the bias at mean density and the point of
vanishing bias appear shifted. An intuition about this shift can be
gained once again from a peak-background split argument by com-
puting the mean density given an over- or underdense shell which
yieldsh 1j 12 > 1i = 1:3andh 1j 12 < 1i = 0:8, respectively.
Besides that, the bias of overdensities is reduced for isolated over-
densities because of the “screening' effect of the surrounding un-
derdense shell and vice versa for isolated underdensities.

3.6 The two-point correlation function of densities-in-spheres

The two-point correlation function of densities-in-spheres was in-
troduced in equation (2b) to relate the joint PDF of densities at large
separation to individual density PDFs. After having obtained ana-
Iytical predictions for the density bias and constrained density bias
we can use them to predict the modulation for the correlation func-
tion (re) thatis introduced by those bias functions. In Figure 10
we show the modulation functid{ )o( ) = (; %re)= (re)
computed from the unconstrained density bias and constrained den-
sity bias given slope as was shown in Figure 8. As mentioned be-
fore, the constrained density bias given a negative or positive slope
can be viewed as giving a proxy to peaks when we have a nega-
tive slope around an overdensity (positive peak) or positive slope
around an underdensity (negative peak), respectively. Hence, the
different bias modulations we show are the ones for the auto- and
cross-correlations of masses (unconstrained densities) and peaks
(densities with slopes), in the spirit of Regos & Szalay (1995); Bal-
dauf et al. (2016), but with the added value of capturing the quasi-
linear regime of structure formation.

The upper panel shows the autocorrelation for positive peaks
(negative slopes), mass and negative peaks (positive slopes). The
mass correlation function in the middle upper panel shows that
over- and underdensities among themselves are positively corre-
lated and more strongly clustered than spheres of average density
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(lower left and upper right part of the plot) while over- and under- before that). However, it is expected that one could restrict the anal-
dense spheres are negatively correlated with each other (lower rightysis around the maximum of the PDF and therefore get an estimate
and upper left part). The point of zero bias, when compared to the of the dark matter correlation function even for smaller separations.
unconstrained case, is shifted into the quadrant that correspondsto  The right-hand panel of Figure 11 shows the corresponding
over- or underdensities if positive or negative peaks are involved maximum likelihood estimate for(r¢) as a function of the separa-
which also points to the interesting region of the plots where the tion compared to a sample estimator with no prior on the underlying
peak correlation differs from the average correlation. The lower PDF
panel shows the cross-correlations between positive peaks (nega- n )
tive slopes), mass and negative peaks (positive slopes). A=hpq 1 (35)
Overall the ab initio analytic bias functions for the two-point 11,5 5greement between the sample and likelihood estimators is re-
correlation of density in spheres, equations (27) and (29), have bee”markame, highlighting that the model presented here for the two-

shown to be in very good agreement with the HR4 simulation. This .t qensity PDF is very good and could be used to measure more
is remarkable, given that these function are very simple explicit al- accurately the dark matter correlation function.

gebraic functions of the underlying linear power spectrum via equa-
tion (8) or (21). It also demonstrates that modern simulations cap-
ture very accurately the one and two-point statistics of non-linear

gravitational clustering. 4.2 Qualifying the estimator

This procedure is expected to perform better than usual sample es-
timators when the eld becomes mildly non-linear. Indeed, in anal-
4 DARK MATTER CORRELATION ML ESTIMATOR ogy to the analysis presented in Codis et al. (2016b), one can show

. . L that the scatter of the maximum likelihood estimator,
Equation (2a) allows us tanalytically model the statistics of the

cosmic density eld in two locations of space. This model only de- "L = argmax L( ); (36)

pends on two parameters: the variance of the density eld measured A )

at present-time, 2(R), and the value of the two-point dark matter IS much smaller than that of the sample estimatgr,To illustrate

correlation function, (re), at the separation. Therefore, following  this point, for different separations between 50 and 250Mpd,

the ideas developed in Codis et al. (2016b) for the estimation of the We randomly divide the pairs of sphere_s of radiis 15Mpc=hin

variance (R), one can build a maximum likelihood estimator for 216 subsets. For each subset, we estimate the dark matter correla-

the two-point correlation (re) which should perform better than tion function via the sample estimator and the maximum likelihood

the sample estimator as time grows and non-gaussianities arise. estimator. The mean and one standard deviation are shown on Fig-
Let us focus here on the two-point density statistics at one Ure 12. Both are shown to be unbiased, as the mean is consistent

scale only for which equation (2a) becomes with the correlation function measured from the full simulation,
and do not depend on the separation. But, the maximum likelihood
P(; 9= PO)P( YA+ (re)b( )b 9); (33) estimator is shown to give a tighter measurement of the dark matter

correlation function than the arithmetic estimate, the scatter being
deduced by a factor of ve in this case. This method could there-
fore be applied successfully to real surveys provided one is able
to model galaxy biasing (Feix et al in prep.). Such likelihood es-
| timators could also be generalized to subset regions of the top-hat
Itered eld where the density has a given value, which could be
chosen so as to optimize the sought level of non-linearity.

Note nally that the underlying cosmological parameters en-
ter the likelihood functiorl (z) at a given redshiftz, twice: via
4.1 Fiducial experiment from HR4 the bias functionb( ; z ), and via the generalized perturbation the-
ory redshift dependent two-point functior(y; z). Following Codis
et al. (2016b), one could imagine in the long run building an opti-
mal dark energy experiment which would measure the dark energy
parameters while leveraging both the one and two-point statistics

where Cis the density at a distanae from . In equation (33),
the one-point PDFs only depend on the variance and are compute
using the public codeSSFast described in Appendix A and the
biash( ) is predicted via equation (16). This two-cell PDF is shown
on the left-hand panel of Figure 11 where the effect of the spatial
clustering (dashed line) is compared to the case with no spatial cor-
relation (solid line).

Let us carry out the following experiment: consider th82°
spheres of radiuR = 15Mpc=h of the HR4 simulation at = 0:7
equally spaced on a grid of resolutiorR = 12:5Mpc=h and let
us estimate the corresponding dark matter correlation function at

different separations keeping the variance xed. To do so, for each (Wo; Wa) = argmax X L (jWo; Wa) :

separatiorr; =4 R:::20 R, we look for all pairs of spheres wWowa
separated by; and compute the log-likelihood for different models . .
described by () wherew, andw, would parametrize the equation of state of dark
X energy (Glazebrook & Blake 2005).
L) = logP( s §); (34)

(pia)

where the indice$p; q) describe all pairs of spheres separated by

ri. The maximum of the likelihood can then be found together with 5 CONCLUSIONS

the sigma contours whete = max L( (ri)) 1=2 2.In prac- This paper presented simple parameter-free analytic bias functions
tice, we only consider separations abaveR = 50Mpc=h to for the two-point correlation of density in spheres (equations (27)
avoid the small region where the modeled two-point PDF is not and (29)). These bias functions generalize the so-called Kaiser bias
yetin the large separation regime (but the bias functions, which de- in the mildly non-linear regime for (not so) large separation and
scribe themeandensity at given separation, are in such regime long for arbitrary contrast when considering the density smoothed with
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Figure 10. The bias modulation of the two-point sphere correlation functipnb( 9 = (; %re)= (re) forradiiR = R? = 14 Mpc=h at redshift

z = 0:7 with the variance =0.37 computed from the bias and constrained bias in an over- or underdense mass shell shown in Figure 8. Besides equi-bias
contours we show the line of zero bias= 0 (green line)and unity biad = 1 (green dotted and dashed linahd sketch the con gurations in the insets.

(upper panelsputo-correlations for densities with negative slope (positive pgds), unconstrained densities in comparison to HR4 measurements (mean

as thick black lines, and mean error on the mean as thin black lingsyiddle)and densities with positive slope (negative pedkigiht). (lower panels)
cross-correlations between densities with negative slope and unconstrained déeétfjefensities with negative slope and densities with positive slope
(middle)or densities with positive slope and unconstrained dengiiigist). This modulation captures the expected bias clustering of peaks and voids beyond

the linear regime.

a top-hat Iter (or equivalently measured in spheres). The deriva- matter density, which was shown to be unbiased and very accu-
tion was carried out using a large-deviation principle, while rely- rate for separations above 50Mgt Its variance is up to 5 times
ing on the spherical collapse model. A logarithmic transformation smaller than that of the classical sample estimator. Hence these an-
allowed for a saddle approximation, which was shown to be ex- alytic bias functions should be used jointly with analytic models
tremely accurate against the state-of-the-art HR4 N-body simula- for the two-point function from perturbation theory for cosmic pa-
tion throughout the range of measured densities, e.g. extending therameter estimation, as they capture the biasing effect of non-linear
match to the theory by a factor of 10 or more on joint PDFs, con- regime of structure formation.

ditionals and marginals. This is both a success of the theory and

an assessment of the quality of this simulation. The conditional ) ) )
density-given-slope and density-given-mass biases were also pre- L€t us stress in closing that the saddle point PDFs presented
sented as a quasi-linear proxy to the BBKS extremum correlation N this work are not arbitrary  tting functions, but a clear predic-
functions operating at lower redshifts. As an illustration, Figure 10 tion of the theory of gravitational clustering which allows for direct
presented the expected bias modulation of the sphere-sphere corref0mparison with data a low redshift. These PDFs should be also

lation function at redshift 0.7 in spheres of 14 Mbc compared favourably with tstoa qunqrmal PDF which providg
a much worse match as illustrated in Figure D1. The saddle point

Codis et al. (2016a) recently showed how such bias functions approximation presented here gives, at very little extra cost, a few
could be used as a mean of mitigating correlation errors when com- percent accuracy over about 4 orders of magnitude in the values
puting count-in-cell statistics on nite surveys. Conversely, based of the one- and two-cell PDFs and percent accuracy on the bias
on the knowledge of the joint PDF of the density in spheres sep- functions all densities probed by the simulation with an explicit de-
arated byre, we presented and implemented in Section 4 a maxi- pendence of both cosmology, through the initial power spectrum,
mum likelihood estimator for the underlying top-hat smoothed dark and the chosen theory of gravitation, though the spherical collapse



Non-linear two-point statistics of cosmic densities13

Figure 11. Left-hand panel: PDF of the densities separateddy 50 Mpc=h in the HR4 simulation (from dark to light blue) and predicted fore) = 0

(dashed) an@:00558 (dotted). Contours are displayed fog P = 1;0:5;0
for the maximum likelihood estimate of the dark matter correlation funcﬁgn,

Figure 12. Estimate of the dark matter correlation functionzat= 0:7
in 216 random subsamples &f =222,264 pairs of spheres of radius
R = 15 Mpc=h separated bye = 50 ::: 250Mpc=h. The mean and one
standard deviation area are shown in blue for the maximum likelihood es-
timator "\ and in red for the usual sample estimafgr We display only
the difference compared to the dark matter correlation function measured
in the full simulation which is assumed to be the true underlying value of

. As expected, the maximum likelihood estimator provides a much smaller
scatter than the sample estimator.

model. In this paper we ignored redshift-space distortion or galaxy
biasing which will be investigated in Feix et al (in prep.).

Acknowledgements: This work is partially supported by
the grants ANR-12-BS05-0002 and ANR-13-BS05-0005 (http://
cosmicorigin.org) of the Frendhgence Nationale de la Recherche
CU is supported by the Delta-ITP consortium, a program of the
Netherlands organization for scienti c research (NWO) that is
funded by the Dutch Ministry of Education, Culture and Science
(OCW). She thanks IAP for hospitality when this project was

4, Right-hand panel: one (dark blue) and three-sigma (light blue) contours
compared with the arithmetic estimafa, (dashed line).

LABEX funded by the ANR (under reference ANR-10-LABX-63)
within the Investissements d'Aveniprogramme under reference
ANR-11-IDEX-0004-02. We thank Mark Neyrinck for comments.

References

Baldauf T., Codis S., Desjacques V., Pichon C., 20M6n. Not.
R. Astr. Soc, 456, 3985

Balian R., Schaeffer R., 1988str. & Astrophys, 220, 1

Bardeen J. M., Bond J. R., Kaiser N., Szalay A. S., 1988r0-
phys. J, 304, 15

Bernardeau F., 1992strophys. J. Letter390, L61

Bernardeau F., 199&str. & Astrophys, 312, 11

Bernardeau F., Codis S., Pichon C., 20i#l®n. Not. R. Astr. Soc.
, 449, L105

Bernardeau F., Colombi S., Ga#itaya E., Scoccimarro R., 2002,
Phys. Rep, 367, 1

Bernardeau F., Pichon C., Codis S., 20Phys. Rev. D, 90,
103519

Bernardeau F., Reimberg P., 2015, ArXiv e-prints

Codis S., Bernardeau F., Pichon C., 20®n. Not. R. Astr. Soc.
, 460, 1598

Codis S., Pichon C., Bernardeau F., Uhlemann C., Prunet S., 2016,
Mon. Not. R. Astr. S0¢.460, 1549

Cooray A., Sheth R., 200Rhys. Rep, 372, 1

Dekel A., Rees M. J., 198Nature, 326, 455

Desjacques V., Crocce M., Scoccimarro R., Sheth R. K., 2010,
Phys. Rev. D 82, 103529

Dubinski J., Kim J., Park C., Humble R., 2004, New Astronomy,
9,111

Gay C., Pichon C., Pogosyan D., 20Phys. Rev. D 85, 023011

Glazebrook K., Blake C., 2005, The Astrophysical Journal, 631,

completed. D. Pogosyan thanks the Institut Lagrange de Paris, a 1



14 C. Uhlemann, S. Codis, J. Kim, C. Pichon et al.

Juszkiewicz R., Bouchet F. R., Colombi S., 199&trophys. J. APPENDIX B: PDF AND BIAS FUNCTION DERIVATION
Letter, 412, L9

Kaiser N., 1984Astrophys. J. Letter284, L9

Kaiser N., 1987Mon. Not. R. Astr. S0¢.227, 1

Kiessling A., Cacciato M., Joachimi B., Kirk D., Kitching T. D.,
Leonard A., Mandelbaum R., Safer B. M., Sibn C., Brown
M. L., Rassat A., 20155pace Sci. Rey193, 67

Kim J., Park C., L'Huillier B., Hong S. E., 2015, Journal of Korean
Astronomical Society, 48, 213

Laureijs R., Amiaux J., Arduini S., Auguwes J., Brinchmann J.,  B1 The PDF of density in concentric spheres

Cole R., Cropper M., Dabin C., Duvet L., Ealet A., et al. 2011, o
ArXiv e-prints Bernardeau et al. (2014) computed the joint PPEf «g), of

Levi M.. Bebek C.. Beers T.. Blum R.. Cahn R.. Eisenstein D.. densities in concentric spheres, a highly symmetric con guration
Flaugher B., Honscheid K., Kron R., Lahav O., McDonald P. which allows to take advantage of the spherical collapse model for

Roe N., Schlegel D., representing the DESI collaboration 2013, gravitational dynamics. To obtain the PDF we use the cumulant

Let us present shortly the idea behind the large deviation principle
that allows to obtain the PDF of densities in concentric cells and the
generalization to the joint PDF of densities at different positions.
For more details we refer to Uhlemann et al. (2016) and Codis et al.
(20164).

ArXiv e-prints generating function of densities in concentric cell§f «g), de-
LSST Science Collaboration Abell P. A., Allison J., Anderson Ned via a Laplace transform of the density PR «g)

S. F, Andrew J. R., Angel J. R. P, Armus L., Arnett D., Asz- z

talos S. J., Axelrod T. S., et al. 2009, ArXiv e-prints " (f kg) =log kd kexp( k k k) P(f k9) ; (B1)
Regos E., Szalay A. S., 1995, Monthly Notices of the Royal As- % ;
tronomical Society, 272, 447 = log[hexp( « « «)i]= hy P i

Schneider A., Teyssier R., 201¥urnal of Cosmology and Astro- ipi!

Particle Physics 12, 049 Pi=e
Springel V., 2005Mon. Not. R. Astr. S0¢.364, 1105 This relationship is useful because, in the limit of zero variance,
Takada M., Ellis R. S., Chiba M., 2014, Publications of the Astro- the cumulant generating function is obtained analytically from the
nomical Society of Japan, 66, R1 decay-rate function( f Q) via a Legendre transformation
Taruya A., Bernardeau F., Nishimichi T., Codis S., 20BRys. X @
Rev. D, 86, 103528 "(f kg) = i (fyg); i==1(f«g; (B2
Taruya A., Nishimichi T., Saito S., 201®hys. Rev. D, 82, i i
063522

where the conjugate variablés g are functions of the densities
'f « g viathe stationary condition on the decay-rate function which
in turn has been obtained from the initial decay-rate function by a
simple remapping according to spherical collapse as described in
equation (10) (as a result of the contraction principle). The PDF
of the density is then given as an inverse Laplace transform of the
cumulant generating function(f «g)

ZY 4. X ' #
P(f «g) = ﬁexp k k' (f xg) : (B3)

APPENDIX A: LSSFAST PACKAGE k k
The One_point density PDF and the bias functions for power- Hence, PDF can be obtained from a numerical integration in the
law and arbitrary power spectra are made available in the complex plane as done in Bernardeau et al. (2014, 2015) or evalu-
LSSFast package distributed freely at http:/cita.utoronto.ca/ ated using a saddle point approximation for the log-density (which

codis/LSSFast.html. Two versions of the code are presented. Thehas a close-to-optimal range of validity) as described in Uhlemann
simpler version, PDFnsand biasns , assumes a running index, et al. (2016).
meaning that the variance is given by

Uhlemann C., Codis S., Pichon C., Bernardeau F., Reimberg P.
2016,Mon. Not. R. Astr. S06.460, 1529
Valageas P., 200Astr. & Astrophys, 382, 412

200y — 2 *(Rp) : - - -
(R) (R:Rp)3+ EE R:Rp)3+ e (A1) B2 Two-point clustering of concentric spheres
Let us now consider two sets of concentric spheres separated by a
where can be non-zero to take into account the variation of the distancer. and de ne the corresponding densitfescg f 1k g
spectral indexs. The density PDF is analytically computed from andf 2g f 2xg. We are interested in the joint density PDF
equation (23) and the bias from equation (27). This code is very P(f «g;f 2g;re) which, at large separations > R, can be

ef cient and runs in about one second on one processor for one predicted from the individual PDR3(f ;-,. g) and some effec-

evaluation. Note that the function®DFns and biasns take tive bias function$f 1-,. g) according to equation (2b). The ef-

three arguments,, andns, and has one option,. fective bias functions encode the correlations of the densities in
The second version of the codd&?DFand bias , can be ap- spheres which are hence related to the two-point correlation func-

plied to arbitrary power spectra. In this case, the functio(R) is tion of the underlying dark matter distribution. In analogy to

tabulated using equation (8). Once this tabulation is done (typically the density PDF at one point, also the joint density PDF at two
one minute on one processor), each evaluation of the PDF and thedifferent points can be obtained from the corresponding cumu-
bias takes about the same time as for the power-law cadesgc). lant generating functioh (f «g;f 2g;re) of the joint cumulants



Non-linear two-point statistics of cosmic densities15

hft::; P O Omi o asinverse Laplace transform of correlated variable to the following set of independent variables
. 0. — 2 0
I;(f kG f Pgire) = (B4) e (C1)
Y dd§ 0 0y, o 0 un 11 11 1
S5O0 kCkkr ) F (gl Kgire) 2
12 11 2
X = P== z z 2 Tz N (€2
In Codis et al. (2016a) it has been shown that in the large separation 2 1 12 1
limit, where the separation distancgis much larger than all radii which are built to be decorrelated and normalised by their variance:
R at the individual points, the joint cumulant generating function 2 _ 2 _ 2 _1. hii=hii=h i=0
" (f xg;f 2g;re) can be derived based on the following idea: for ro= - S M= hab=hot=

large enough separations the joint cumulants can be shown to b

. S —
_ €once issetto =( 12 &4 1 %)= 4 2. Thanksto
well approximated by

the diagonalizatiorf 1; ; ) now follow a standard normal distri-

hPia:: B 031 e O?nm i = bution, such that it is easy to check that the density bias reads
1 H m - h 0 ; i = = i
h8 o B %ichy i @mic: (BS) po( )= 22l i == (C3)
(re) 11 11

Hence, in this limit, it is enough to know the subset of cumulants which is proportional to the initial overdensityas expected from

of the typeh 5 ::: Bn 9. to determine the generating function  (Kaiser 1984). The two-cell density bias also follows as

of joint cumulants (f kg;f «g;re). The generating function of o ) ) %@

the joint cumulants of this special type can be shown to be (1 5) = hr(5 1)i( 1 2)i
Co(f kgire) =1+ (re)b (f Q) (86) . i =1

if we assume that for large separatioRsve have 1, 11-

i (C4)

with the bias cumulant generating function de ned as

XX
b (f «g) i - (B7) C2 Expected offset of density bias

A Figure 5 shows that for the non-linear density eld, the one cell
Equations (B5) and (B6) can then be used to express the joint cumu-pjashy( ) is non-vanishing and positive at the mean density 1
lant generating functioh (f «g;f ?g;re) interms of the already  \hereas the Gaussian result from equation (C3) predicts zero bias.
known generating function(f «g) of cumulants at one pointvia  Here we compute this offset using perturbative methods in the

' AP BN weakly non-Gaussian regime which are expected to be accurate for
(f kgﬂf kg,re)— . i
. . o o variances of order . 0:2.
(f xg)+" (f k@) + (re)b (f k@b (f «g): (BY) We use a moment expansion for the two-cell distribution func-

The bias cumulant generating functidn(f g), is therefore de- tion. The Ga_ussian limit provic_ies the kernel to de ne the orthogo-
ned as the sum of the rst partial derivatives of the initial decay- @l Polynomials of the expansion (Gay et al. 2012). In the decorre-

rate function and hence closely related to equation (10). The bias'ated variables, and introduced in equation (C1) these are just
function is then obtained from the bias cumulant generating func- Products of Hermite polynomials, which for the rst non-Gaussian

tion via correction to the two-point distribution function give
2 2
b(f «g P(f «9)= | P(1;) ziexp 71 > (Cc5)
Zy d X ' h 1 1
270 (f «aexp i (9 (B9) 1+ § H(0+ g * Ha()
k k H
1 1 :
Evaluating the integral in equation (B9) using a saddle point ap- ! 2 Hi( 1)H2( )+ > ? OH2( )H() :
proximation then gives . ) o
) The conditional mean that determines the one-cell bias is
_ @ fig _ X . Z, Z,
b(f kg) b e i i( i) di d X1 )P(1)o(a(2s) )
i =1 ho ,= j= 1z 1z
(B10) 1] 1 | =T =T
d . dP(1;)o(2(1;) )
1 1

where inverting equation (C1) gives
APPENDIX C: WEAKLY NON-GAUSSIAN BIAS P

o_ 11t .
D= 11 11 : (CG)
11

Let us revisit here the origin of the normalization shift discussed in 1= 11,
the main text by looking at the Gaussian and weakly non Gaussian

predictions for the mean density bias After some algebra, and expressing the moments pf back via

the moments of;; 2, the one-cellbiasat= =1 inthe leading
non-Gaussian order becomes
Cl Kaiser bias 3 0 2
=1 2 ML Qi C
To study one-cell and two-cell bias, we rst diagonalise the covari- 1 1 1(r)

ance matrix from equation (13), by transforming frofh 1; » set As expected, it is zero for = 0. In the large separation limit,
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Figure D1. The residuals of the best tlog normal PO¥ ) for redshift
z =0:7and radiiR = 10; 11;:::; 15Mpc/h (from blue to redjn compari-
son to the measurement from HR&ith error bars) This is to be contrasted
to the quasi perfect match of the saddle PDF presented in Figure 3

the cubic moments can be computed using perturbation theory

(Bernardeau et al. 2002) and give

h 3 34 h? 2 68 1
—— =S — (n+3); = — =(n+3
a 3 7 ( ) 2 1 21 51 3( )
such that the bias offset evaluates to
1 4 nn= 16 __
(1) 5(33 Cxu)= 21 3 0:34; (C8)

a value fully consistent with the measured one.

APPENDIX D: REDSHIFT ZERO MATCH

While we focused our comparison between the theoretical predic-
tions and the HR4 simulation in Section 3 to redshift 0:7, we
here provide results from high redshift= 4 until todayz = 0 to
outline the reach of our formalism.

D1 Saddle point vs. lognormal PDF

al.

Figure D2. The density PDFP ( ) predicted from equation (23) using
LSSFast (solid lines)for radii R = 10; 11;:::; 15Mpc/h (from blue to
red) at redshifz = 4 with = 21=13in comparison to the HR4 measure-
ment(data points)and the corresponding residuals.

this case. This suggests that in order to get percent precision on
the PDF at low redshift, one probably has to account for next-to-

leading order correction to the skewness (that a slightly lower value
of seems to reproduce). This is clearly seez at 0 when the

The one-cell saddle point PDF presented in equation (23) obtainednumerical integration of the inverse Laplace transform is carried
from a log-density mapping has to be contrasted to an ad-hoc log- 0ut and shows residuals proportional to the typical third order Her-

normal PDF

1 ?=2)?

)= plif exp (log-'-i
2 22

with a best t for the variance which mis-matches the simulated
PDFs at the 10% level or more in its tail, as shown in Figure D1.
This is to be compared with the excellent match seen in Figure 3.
Note that, while doing a joint t of the mean (which is otherwise
assumed to be?=2) and variance does improve the t around the
mean density, it worsens the mismatch in the tail.

Plognorm( ) (Dl)

D2 The density PDF in concentric spheres

In Figure D2 and D3 we show the one-cell PDFs for redshiftsO
andz = 4 comparing the saddle point approximation computed
usingLSSFast with the measurements from the HR4 simulation.
Furthermore we show the two-cell PDF for redshift 0 in Fig-

ure D4. Note that we have chosen to use= 1:59 instead of
21713 1:61 at low redshift as the residuals were smaller in

mite polynomial, characteristic of the skewness. Adding higher or-
der corrections to the skewness (by means of perturbation theory)
is left for future work.

D3 Bias functions
D3.1 Density bias

As a complement to Figure 5 that shows the density bias for redshift
z = 0:7, we show in Figure D5 the corresponding result for red-
shiftz = 0 nding again excellent agreement with the simulation
results.

D3.2 Joint density slope bias

As a complement to Figure 7 that shows the joint density bias for
redshiftz = 0:7, we show in Figure D6 the corresponding results
for redshiftz = 0 nding again good agreement with the simula-
tion.
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Figure D5. The density bias functiob( ) predicted from the saddle point
approximation for the log-density = log  at redshiftz = O for different
radii and hence variances as indicated in the legenddor  1:6.

Figure D3. The density PDFP ( ) predicted from equation (23) using
LSSFast (solid lines)for radii R = 10; 11;:::; 15Mpc/h (from blue to
red) at redshifz = 0 with a slightly adjusted = 1:59 in comparison to
the HR4 measureme(data pointsjand the corresponding residuals.

Figure D6. A contour plot of the joint density and slope bias func-
tion b( ;s ) predicted from the saddle point approximation equation (29)
with normalization from equation (18) fdR1 = 14 Mpc=h andR; =
15Mpc=h at redshifiz = 0 where =0.50, (correspondingto = 0:55),

in comparison to the measurements from HR4 (mean as thick black lines,
and mean error on the mean as thin black lines).

Figure D4. The joint density-slope PDP( 1; 2) predicted from equa-
tion (25) for radiiR1;2 = 14; 15 Mpc/ at redshifiz = 0 with =21=13
in comparison to the measurement from H®#in wiggly lines)
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