Hunting high and low: disentangling primordial and late-time non-Gaussianity with cosmic densities in spheres

Abstract : Non-Gaussianities of dynamical origin are disentangled from primordial ones using the formalism of large deviation statistics with spherical collapse dynamics. This is achieved by relying on accurate analytical predictions for the one-point probability distribution function (PDF) and the two-point clustering of spherically-averaged cosmic densities (sphere bias). Sphere bias extends the idea of halo bias to intermediate density environments and voids as underdense regions. In the presence of primordial non-Gaussianity, sphere bias displays a strong scale dependence relevant for both high and low density regions, which is predicted analytically. The statistics of densities in spheres are built to model primordial non-Gaussianity via an initial skewness with a scale-dependence that depends on the bispectrum of the underlying model. The analytical formulas with the measured nonlinear dark matter variance as iNon-Gaussianities of dynamical origin are disentangled from primordial ones using the formalism of large deviation statistics with spherical collapse dynamics. This is achieved by relying on accurate analytical predictions for the one-point probability distribution function (PDF) and the two-point clustering of spherically-averaged cosmic densities (sphere bias). Sphere bias extends the idea of halo bias to intermediate density environments and voids as underdense regions. In the presence of primordial non-Gaussianity, sphere bias displays a strong scale dependence relevant for both high and low density regions, which is predicted analytically. The statistics of densities in spheres are built to model primordial non-Gaussianity via an initial skewness with a scale-dependence that depends on the bispectrum of the underlying model. The analytical formulas with the measured nonlinear dark matter variance as input are successfully tested against numerical simulations. For local non-Gaussianity with a range from $f_{NL}$ $=$ $−$100 to $+$100 they are found to agree within 2% or better for densities $\rho$ $\in$ [0.5, 3] in spheres of radius 15 Mpc/$h$ down to $z$ = 0.35. The validity of the large deviation statistics formalism is thereby established for all observationally relevant local-type departures from perfectly Gaussian initial conditions. The corresponding estimators for the amplitude of the nonlinear variance $\sigma _8$ and primordial skewness $f_{NL}$ are validated using a fiducial joint maximum likelihood experiment. The influence of observational effects and the prospects for a future detection of primordial non-Gaussianity from joint one- and two-point densities-in-spheres statistics are discussed.
Document type :
Journal articles
Complete list of metadatas

Cited literature [71 references]  Display  Hide  Download

https://hal-cea.archives-ouvertes.fr/cea-01677174
Contributor : Emmanuelle de Laborderie <>
Submitted on : Monday, January 8, 2018 - 10:17:51 AM
Last modification on : Tuesday, August 13, 2019 - 10:16:03 AM

Annex

Identifiers

Citation

C. Uhlemann, E. Pajer, C. Pichon, T. Nishimichi, S. Codis, et al.. Hunting high and low: disentangling primordial and late-time non-Gaussianity with cosmic densities in spheres. Monthly Notices of the Royal Astronomical Society, Oxford University Press (OUP): Policy P - Oxford Open Option A, 2018, 474 (3), pp.2853 - 2870. ⟨10.1093/mnras/stx2623⟩. ⟨cea-01677174⟩

Share

Metrics

Record views

180

Files downloads

32