M. Aime, E. Botta, and . Terreno, Gd(III)-BASED CONTRAST AGENTS FOR MRI, Adv. Inorg. Chem, vol.57, p.173, 2005.
DOI : 10.1016/S0898-8838(05)57004-1

P. Caravan, Strategies for increasing the sensitivity of gadolinium based MRI contrast agents, Chemical Society Reviews, vol.40, issue.6, p.512, 2006.
DOI : 10.1039/b510982p

L. O. Bloembergen and . Morgan, Proton Relaxation Times in Paramagnetic Solutions. Effects of Electron Spin Relaxation, The Journal of Chemical Physics, vol.5, issue.3, p.842, 1961.
DOI : 10.1063/1.1742867

S. Merbach, L. Helm, and E. Toth, The chemistry of contrast agents in medical magnetic resonance imaging, 2013.
DOI : 10.1002/9781118503652

H. Fries and E. Belorizky, Determination of the Static Zero-Field Splitting of Gd3+ Complexes in Solution from the Shifts of the Central Magnetic Fields of Their EPR Spectra, ChemPhysChem, vol.132, issue.8, p.2074, 2012.
DOI : 10.1002/ejic.200300036

P. H. Belorizky and . Fries, Simple analytical approximation of the longitudinal electronic relaxation rate of Gd(iii) complexes in solutions, Physical Chemistry Chemical Physics, vol.6, issue.9, p.2341, 2004.
DOI : 10.1039/b316249d

A. Rubinstein, Z. Baram, and . Luz, =3/2 and 5/2, Molecular Physics, vol.47, issue.1, p.67, 1971.
DOI : 10.1063/1.1701321

P. Westlund, N. Benetis, and H. Wennerström, hexa-aquo complex, Molecular Physics, vol.63, issue.1, p.177, 1987.
DOI : 10.1021/ja00765a027

C. Odelius, J. Ribbing, and . Kowalewski, Molecular dynamics simulation of the zero???field splitting fluctuations in aqueous Ni(II), The Journal of Chemical Physics, vol.74, issue.5, p.1800, 1995.
DOI : 10.3891/acta.chem.scand.45-0011

C. Odelius, J. Ribbing, and . Kowalewski, Spin dynamics under the Hamiltonian varying with time in discrete steps: Molecular dynamics???based simulation of electron and nuclear spin relaxation in aqueous nickel(II), The Journal of Chemical Physics, vol.74, issue.9, p.3181, 1996.
DOI : 10.1080/00268979300100911

J. Kruk and . Kowalewski, Vibrational motions and nuclear spin relaxation in paramagnetic complexes: Hexaaquonickel(II) as an example, The Journal of Chemical Physics, vol.35, issue.10, p.4079, 2002.
DOI : 10.3891/acta.chem.scand.45-0011

H. Mare?, K. Liimatainen, J. Laasonen, and . Vaara, (aq) from First Principles, Journal of Chemical Theory and Computation, vol.7, issue.9, p.2937, 2011.
DOI : 10.1021/ct200320z

H. Mare?, T. O. Liimatainen, J. Pennanen, and . Vaara, (aq) from First Principles, Journal of Chemical Theory and Computation, vol.7, issue.10, p.3248, 2011.
DOI : 10.1021/ct200336c

J. Rantaharju, J. Mare?, and J. Vaara, ), The Journal of Chemical Physics, vol.141, issue.1, p.14109, 2014.
DOI : 10.1063/1.1768168

R. Lasoroski, R. Vuilleumier, and . Pollet, molecular dynamics, The Journal of Chemical Physics, vol.141, issue.1, p.14201, 2014.
DOI : 10.1021/jp0633289

URL : https://hal.archives-ouvertes.fr/hal-01157659

D. Castelli, M. C. Caligara, M. Botta, E. Terreno, and S. Aime, O Relaxometric Study Sheds Light on the Solution Structure and Dynamics of the Lanthanide(III) Complexes of HPDO3A, Inorganic Chemistry, vol.52, issue.12, p.7130, 2013.
DOI : 10.1021/ic400716c

A. Khan, D. Kubica-misztal, J. Kruk, M. Kowalewski, and . Odelius, Systematic theoretical investigation of the zero-field splitting in Gd(III) complexes: Wave function and density functional approaches, The Journal of Chemical Physics, vol.60, issue.3, p.34304, 2015.
DOI : 10.1103/PhysRevB.85.085427

W. Neese and . Interdisc, The ORCA program system, Wiley Interdisciplinary Reviews: Computational Molecular Science, vol.132, issue.1, p.73, 2012.
DOI : 10.1021/ja101281e

E. V. Lenthe, E. J. Baerends, and J. G. Snijders, Relativistic regular two???component Hamiltonians, The Journal of Chemical Physics, vol.99, issue.6, p.4597, 1993.
DOI : 10.1016/0301-0104(88)80018-1

A. Hess, C. M. Marian, U. Wahlgren, and O. Gropen, A mean-field spin-orbit method applicable to correlated wavefunctions, Chemical Physics Letters, vol.251, issue.5-6, p.365, 1996.
DOI : 10.1016/0009-2614(96)00119-4

F. Weigend and R. Ahlrichs, Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy, Physical Chemistry Chemical Physics, vol.110, issue.16, p.3297, 2005.
DOI : 10.1007/s002140050244

C. Schäfer, R. Huber, and . Ahlrichs, Fully optimized contracted Gaussian basis sets of triple zeta valence quality for atoms Li to Kr, The Journal of Chemical Physics, vol.100, issue.8, p.5829, 1994.
DOI : 10.1016/0009-2614(90)85472-O

A. Pantazis and F. Neese, All-Electron Scalar Relativistic Basis Sets for the Lanthanides, Journal of Chemical Theory and Computation, vol.5, issue.9, p.2229, 2009.
DOI : 10.1021/ct900090f

F. Eichkorn, O. Weigend, R. Treutler, and T. Ahlrichs, Auxiliary basis sets for main row atoms and transition metals and their use to approximate Coulomb potentials, Theoretical Chemistry Accounts: Theory, Computation, and Modeling (Theoretica Chimica Acta), vol.97, issue.1-4, p.119, 1997.
DOI : 10.1007/s002140050244

D. Ganyushin and F. Neese, First-principles calculations of zero-field splitting parameters, The Journal of Chemical Physics, vol.19, issue.2, p.24103, 2006.
DOI : 10.1103/PhysRev.97.937

F. Neese, Calculation of the zero-field splitting tensor on the basis of hybrid density functional and Hartree-Fock theory, The Journal of Chemical Physics, vol.205, issue.16, p.164112, 2007.
DOI : 10.1007/978-1-4757-0961-2_2

R. Pederson and S. N. Khanna, molecules, Physical Review B, vol.41, issue.13, p.9566, 1999.
DOI : 10.1103/PhysRevB.42.3276

C. Maurice, N. De-graaf, and . Guihéry, Theoretical determination of spin Hamiltonians with isotropic and anisotropic magnetic interactions in transition metal and lanthanide complexes, Physical Chemistry Chemical Physics, vol.129, issue.43, p.18784, 2013.
DOI : 10.1021/ja0725807

URL : https://hal.archives-ouvertes.fr/hal-00906982

H. Savin and . Flad, Density functionals for the Yukawa electron-electron interaction, International Journal of Quantum Chemistry, vol.58, issue.4, p.327, 1995.
DOI : 10.1007/978-1-4612-3136-3_14

M. W. Gill and R. D. Adamson, A family of attenuated Coulomb operators, Chemical Physics Letters, vol.261, issue.1-2, p.105, 1996.
DOI : 10.1016/0009-2614(96)00931-1

S. Uggeri, P. L. Aime, M. Anelli, M. Botta, C. Brocchetta et al., Novel Contrast Agents for Magnetic Resonance Imaging. Synthesis and Characterization of the Ligand BOPTA and Its Ln(III) Complexes (Ln = Gd, La, Lu). X-ray Structure of Disodium (TPS-9-145337286-C-S)-[4-Carboxy-5,8,11-tris(carboxymethyl)-1-phenyl-2-oxa- 5,8,11-triazatridecan-13-oato(5-)]gadolinate(2-) in a Mixture with Its Enantiomer, Inorganic Chemistry, vol.34, issue.3, p.633, 1995.
DOI : 10.1021/ic00107a017

M. Aime, G. Botta, E. Ermondi, P. L. Terreno, F. Anelli et al., -Nitrophenyl Substituent, Inorganic Chemistry, vol.35, issue.10, p.2726, 1996.
DOI : 10.1021/ic950981u

F. Lammers, D. Maton, M. W. Pubanz, H. Van-laren, A. E. Van-bekkum et al., Structures and Dynamics of Lanthanide(III) Complexes of Sugar-Based DTPA-bis(amides) in Aqueous Solution:?? A Multinuclear NMR Study, Inorganic Chemistry, vol.36, issue.12, p.2527, 1997.
DOI : 10.1021/ic961359k

F. G. Geraldes, A. D. Sherry, I. Lazar, A. Miseta, P. Bogner et al., Relaxometry, animal biodistribution, and magnetic resonance imaging studies of some new gadolinium (III) macrocyclic phosphinate and phosphonate monoester complexes, Magnetic Resonance in Medicine, vol.22, issue.6, p.696
DOI : 10.1148/radiology.177.2.2217775