J. E. Pasilis and . Pemberton, Speciation and Coordination Chemistry of Uranyl(VI)???Citrate Complexes in Aqueous Solution, Inorganic Chemistry, vol.42, issue.21, pp.6793-6800, 2003.
DOI : 10.1021/ic0341800

H. Bailey, J. F. Mosselmans, and P. F. Schofield, Uranyl-citrate speciation in acidic aqueous solutions???an XAS study between 25 and 200 ??C, Chemical Geology, vol.216, issue.1-2, pp.1-16, 2005.
DOI : 10.1016/j.chemgeo.2004.10.011

]. P. Thuéry, (???)-citramalate families, CrystEngComm, vol.44, issue.1, pp.79-85, 2008.
DOI : 10.1021/ic048755k

]. P. Thuéry, B. Masci, and C. , Uranyl Ion Complexation by Cucurbiturils in the Presence of Perrhenic, Phosphoric, or Polycarboxylic Acids. Novel Mixed-Ligand Uranyl???Organic Frameworks, Crystal Growth & Design, vol.10, issue.2, pp.716-725, 2010.
DOI : 10.1021/cg901121c

M. Basile, D. K. Unruh, K. Gojdas, E. Flores, L. Streicher et al., Chemical controls on uranyl citrate speciation and the self-assembly of nanoscale macrocycles and sandwich complexes in aqueous solutions, Chemical Communications, vol.42, issue.25, pp.5306-5309, 2015.
DOI : 10.1021/ic0341800

A. E. Martell, R. D. Hancock, and R. J. Motekaitis, Factors affecting stabilities of chelate, macrocyclic and macrobicyclic complexes in solution, Coordination Chemistry Reviews, vol.133, pp.39-65, 1994.
DOI : 10.1016/0010-8545(94)80056-1

D. K. Unruh, K. Gojdas, E. Flores, A. Libo, and T. Z. Forbes, Synthesis and Structural Characterization of Hydrolysis Products within the Uranyl Iminodiacetate and Malate Systems, Inorganic Chemistry, vol.52, issue.17, pp.10191-10198, 2013.
DOI : 10.1021/ic401705j

P. Thuéry and J. Harrowfield, Structural Variations in the Uranyl/4,4???-Biphenyldicarboxylate System. Rare Examples of 2D ??? 3D Polycatenated Uranyl???Organic Networks, Inorganic Chemistry, vol.54, issue.16, pp.8093-8102, 2015.
DOI : 10.1021/acs.inorgchem.5b01323

C. R. Groom, I. J. Bruno, M. P. Lightfoot, and S. C. Ward, The Cambridge Structural Database, Acta Crystallographica Section B Structural Science, Crystal Engineering and Materials, vol.2, issue.2, pp.171-179, 2016.
DOI : 10.1107/S2052252514028188

M. A. Spackman and D. Jayatilaka, Hirshfeld surface analysis, CrystEngComm, vol.9, issue.1, pp.19-32, 2009.
DOI : 10.1039/b703181e

O. Taylor, G. R. Kennard, and . Desiraju, Crystallographic evidence for the existence of CH.cntdot..cntdot..cntdot.O, CH.cntdot..cntdot..cntdot.N and CH.cntdot..cntdot..cntdot.Cl hydrogen bonds, Journal of the American Chemical Society, vol.104, issue.19, pp.5063-5070, 1982.
DOI : 10.1021/ja00383a012

B. Bosnich, C. K. Poon, M. L. Tobe-b-)-e, A. Barefield, E. J. Bianchi et al., Complexes of Cobalt(III) with a Cyclic Tetradentate Secondary Amine, Inorganic Chemistry, vol.4, issue.8, pp.1102-1108, 1965.
DOI : 10.1021/ic50030a003

L. Shimoni-livny, J. P. Glusker, and C. W. Bock, Lone Pair Functionality in Divalent Lead Compounds, Inorganic Chemistry, vol.37, issue.8, pp.1853-1867, 1998.
DOI : 10.1021/ic970909r

K. E. Knope, D. T. De-lill, C. E. Rowland, P. M. Cantos, A. De-bettencourt-dias et al., Uranyl Sensitization of Samarium(III) Luminescence in a Two-Dimensional Coordination Polymer, Inorganic Chemistry, vol.51, issue.1, pp.201-206, 2012.
DOI : 10.1021/ic201450e

A. T. Kerr, C. L. Cahill, and C. , Postsynthetic Rearrangement/Metalation as a Route to Bimetallic Uranyl Coordination Polymers: Syntheses, Structures, and Luminescence, Crystal Growth & Design, vol.14, issue.4, pp.1914-1921, 2014.
DOI : 10.1021/cg500050q

Z. Otwinowski and W. Minor, [20] Processing of X-ray diffraction data collected in oscillation mode, Methods Enzymol, vol.276, pp.307-326, 1997.
DOI : 10.1016/S0076-6879(97)76066-X

L. J. Farrugia, -III with a Graphical User Interface (GUI), Journal of Applied Crystallography, vol.30, issue.5, p.565, 1997.
DOI : 10.1107/S0021889897003117

K. Momma and F. Izumi, : a three-dimensional visualization system for electronic and structural analysis, Journal of Applied Crystallography, vol.41, issue.3, pp.653-658, 2008.
DOI : 10.1107/S0021889808012016

P. Thuéry and J. Topic, Uranyl-Based Network Solids While all the R,S-malate, R-citramalate and citrate uranyl complexes described here contain the same dimeric subunit with bridging alkoxide donors, variations in the additional species present (d block metal cations and coligands) result in the formation of one-, two-or three-dimensional coordination polymers, a three-dimensional framework being also found in a uranyl-lead(II) tricarballylate complex. Uranyl emission maxima positions for complexes with five equatorial donors are red-shifted with respect to those for the complex with six donors