Multiscaled simulation methodology for neuro-inspired circuits demonstrated with an organic memristor

Abstract : Organic memristors are promising molecular electronic devices for neuro-inspired on-chip learning applications. In this paper, we present a numerically efficient compact model suitable for Fe(bpy)2+3 organic memristors operating according to an intramolecular charge transfer switching mechanism. This compact model, being physics-based and relying on electrical characterizations and parametric extractions performed on test structures, is especially efficient in pulsed mode and describes the conductance variations for both SET and RESET regimes. Using this model, a dynamic multiscale simulation approach has been set-up to extend the model from individual devices to larger model systems that learn progressively through time. To verify the soundness and highlight emergent properties of the organic memristors, instances of the compact model have been simulated within a simple neuromorphic design that co-integrates with CMOS neurons. In addition, a larger supervised learning system using the new compact model is demonstrated. These successful tests suggest our model might be of interest to neuromorphic designers.
Type de document :
Article dans une revue
IEEE Transactions on Multi-Scale Computing Systems, IEEE, 2017, PP (99), pp.1 - 1. 〈http://ieeexplore.ieee.org/document/8107565/〉. 〈10.1109/TMSCS.2017.2773523〉
Domaine :
Liste complète des métadonnées

https://hal-cea.archives-ouvertes.fr/cea-01656702
Contributeur : Serge Palacin <>
Soumis le : mardi 5 décembre 2017 - 22:44:51
Dernière modification le : mardi 12 décembre 2017 - 11:18:04

Identifiants

Citation

Christopher Bennett, Jean-Etienne Lorival, François Marc, Théo Cabaret, Bruno Jousselme, et al.. Multiscaled simulation methodology for neuro-inspired circuits demonstrated with an organic memristor. IEEE Transactions on Multi-Scale Computing Systems, IEEE, 2017, PP (99), pp.1 - 1. 〈http://ieeexplore.ieee.org/document/8107565/〉. 〈10.1109/TMSCS.2017.2773523〉. 〈cea-01656702〉

Partager

Métriques

Consultations de la notice

11