F. King, Corrosion of carbon steel under anaerobic conditions in a repository for SF and HLW in Opalinus Clay, 2008.

S. Poulain, Caractérisation microbiologique de l'argilèargilè a Opalinus du Mont Terri et de l'argilite du Callovo- Oxfordien de Meuse/Haute-Marne, Thèse Sciences chimiques, 2006.

L. Urios, F. Marsal, D. Pellegrini, and M. Magot, Microbial diversity of the 180 million-year-old Toarcian argillite from Tournemire, France, Applied Geochemistry, vol.27, issue.7, pp.1442-1450, 2012.
DOI : 10.1016/j.apgeochem.2011.09.022

X. Campaignole and J. L. Crolet, Method for Studying Stabilization of Localized Corrosion on Carbon Steel by Sulfate-Reducing Bacteria, CORROSION, vol.53, issue.6, pp.440-447, 1997.
DOI : 10.5006/1.3280487

S. Stroes-gascoyne and J. M. West, Microbial studies in the Canadian nuclear fuel waste management program, FEMS Microbiology Reviews, vol.20, issue.3-4, pp.573-594, 1997.
DOI : 10.1111/j.1574-6976.1997.tb00339.x

URL : https://academic.oup.com/femsre/article-pdf/20/3-4/573/18124189/20-3-4-573.pdf

S. Stroes-gascoyne, A. Schippers, B. Schwyn, S. Poulain, C. Sergeant et al., Microbial Community Analysis of Opalinus Clay Drill Core Samples from the Mont Terri Underground Research Laboratory, Switzerland, Geomicrobiology Journal, vol.62, issue.1, pp.1-17, 2007.
DOI : 10.1093/nar/21.22.5279

URL : https://hal.archives-ouvertes.fr/hal-00176818

L. Mauclaire, J. A. Mckenzie, B. Schwyn, and P. Bossart, Detection and cultivation of indigenous microorganisms in Mesozoic claystone core samples from the Opalinus Clay Formation (Mont Terri Rock Laboratory), Physics and Chemistry of the Earth, Parts A/B/C, vol.32, issue.1-7, pp.232-240, 2007.
DOI : 10.1016/j.pce.2005.12.010

L. Urios, F. Marsal, D. Pellegrini, and M. Magot, Microbial Diversity at Iron-Clay Interfaces after 10 Years of Interaction Inside a Deep Argillite Geological Formation (Tournemire, France), Geomicrobiology Journal, vol.4, issue.5, pp.442-453, 2013.
DOI : 10.1099/ijs.0.64285-0

D. Enning and J. Garrelfs, Corrosion of Iron by Sulfate-Reducing Bacteria: New Views of an Old Problem, Applied and Environmental Microbiology, vol.80, issue.4, p.1226, 2014.
DOI : 10.1128/AEM.02848-13

H. Ashassi-sorkhabi, M. Moradi-haghighi, G. Zarrini, and R. Javaherdashti, Corrosion behavior of carbon steel in the presence of two novel iron-oxidizing bacteria isolated from sewage treatment plants, Biodegradation, vol.51, issue.1, pp.69-79, 2012.
DOI : 10.1016/j.corsci.2009.03.037

L. K. Herrera and H. A. Videla, Role of iron-reducing bacteria in corrosion and protection of carbon steel, International Biodeterioration & Biodegradation, vol.63, issue.7, pp.891-895, 2009.
DOI : 10.1016/j.ibiod.2009.06.003

M. K. Schütz, R. Moreira, O. Bildstein, J. E. Lartigue, M. L. Schlegel et al., Combined geochemical and electrochemical methodology to quantify corrosion of carbon steel by bacterial activity, Bioelectrochemistry, vol.97, pp.61-68, 2014.
DOI : 10.1016/j.bioelechem.2013.07.003

H. Videla, Understanding microbial inhibition of corrosion. A comprehensive overview, International Biodeterioration & Biodegradation, vol.63, issue.7, pp.896-900, 2009.
DOI : 10.1016/j.ibiod.2009.02.002

A. Coorevits, A. E. Dinsdale, and . Halket, Taxonomic revision of the genus Geobacillus: emendation of Geobacillus, G. stearothermophilus, G. jurassicus, G. toebii, G. thermodenitrificans and G. thermoglucosidans (nom. corrig., formerly 'thermoglucosidasius'); transfer of Bacillus thermantarcticus to the genus as G. thermantarcticus comb. nov.; proposal of Caldibacillus debilis gen. nov., comb. nov.; transfer of G. tepidamans to Anoxybacillus as A. tepidamans comb. nov.; and proposal of Anoxybacillus caldiproteolyticus sp. nov., INTERNATIONAL JOURNAL OF SYSTEMATIC AND EVOLUTIONARY MICROBIOLOGY, vol.62, issue.Pt 7, pp.1470-1485, 2012.
DOI : 10.1099/ijs.0.030346-0

J. W. Arnold, D. H. Boothe, O. Suzuki, and G. W. Bailey, Multiple imaging techniques demonstrate the manipulation of surfaces to reduce bacterial contamination and corrosion, Journal of Microscopy, vol.64, issue.3, pp.215-221, 2004.
DOI : 10.1046/j.1365-2818.2003.01220.x

B. W. Sherar, P. G. Keech, J. J. Noël, R. G. Worthingham, and D. W. Shoesmith, Effect of Sulfide on Carbon Steel Corrosion in Anaerobic Near-Neutral pH Saline Solutions, CORROSION, vol.69, issue.1, pp.67-76, 2013.
DOI : 10.5006/0687

F. M. Alabbas, C. Williamson, S. M. Bhola, J. R. Spear, D. L. Olson et al., Influence of sulfate reducing bacterial biofilm on corrosion behavior of low-alloy, high-strength steel (API-5L X80), International Biodeterioration & Biodegradation, vol.78, pp.34-42, 2013.
DOI : 10.1016/j.ibiod.2012.10.014

F. M. Alabbas, S. M. Bhola, J. R. Spear, D. L. Olson, B. Mishra et al., The shielding effect of wild type iron reducing bacterial flora on the corrosion of linepipe steel, Engineering Failure Analysis, vol.33, pp.222-235, 2013.
DOI : 10.1016/j.engfailanal.2013.05.020

M. K. Schütz, M. L. Schlegel, M. Libert, and O. Bildstein, Impact of Iron-Reducing Bacteria on the Corrosion Rate of Carbon Steel under Simulated Geological Disposal Conditions, Environmental Science & Technology, vol.49, issue.12, pp.7483-7490, 2015.
DOI : 10.1021/acs.est.5b00693

C. Chautard, Interactions fer/argile en conditions de stockage géologique profond ? Impacts d'activités bactériennes et d'hétérogénéités, 2013.

C. Beaucaire, J. L. Michelot, S. Savoye, and J. Cabrera, Groundwater characterisation and modelling of water???rock interaction in an argillaceous formation (Tournemire, France), Applied Geochemistry, vol.23, issue.8, pp.2182-2197, 2008.
DOI : 10.1016/j.apgeochem.2008.03.003

URL : https://hal.archives-ouvertes.fr/hal-00357173

D. L. De-faria, S. Silva, and M. T. De-oliveira, Raman microspectroscopy of some iron oxides and oxyhydroxides, Journal of Raman Spectroscopy, vol.28, issue.11, pp.873-878, 1997.
DOI : 10.1002/(SICI)1097-4555(199711)28:11<873::AID-JRS177>3.0.CO;2-B

D. Neff, L. Bellot-gurlet, P. Dillmann, S. Reguer, and L. Legrand, Raman imaging of ancient rust scales on archaeological iron artefacts for long-term atmospheric corrosion mechanisms study, Journal of Raman Spectroscopy, vol.33, issue.10, pp.1228-1237, 2006.
DOI : 10.1002/9783527613229

URL : https://hal.archives-ouvertes.fr/hal-00159091

M. Saheb, D. Neff, L. Bellot-gurlet, and P. Dillmann, Raman study of a deuterated iron hydroxycarbonate to assess long-term corrosion mechanisms in anoxic soils, Journal of Raman Spectroscopy, vol.38, issue.5, pp.1100-1108, 2011.
DOI : 10.5006/1.3577332

K. Qvortrup, J. Rostgaard, P. Bretlau, P. , and A. , Surface Morphology of the Endolymphatic Duct in the Rat a Scanning Electron Microscopy Study, Annals of Otology, Rhinology & Laryngology, vol.248, issue.2, pp.120-126, 1995.
DOI : 10.1007/BF00634783

M. Alhede, K. Qvortrup, R. Liebrechts, N. Høiby, M. Givskov et al., Combination of microscopic techniques reveals a comprehensive visual impression of biofilm structure and composition, FEMS Immunology & Medical Microbiology, vol.65, issue.2, pp.1-8, 2012.
DOI : 10.1111/j.1574-695X.2012.00956.x

R. B. Herbert-jr, Properties of Goethite and Jarosite Precipitated from Acidic Groundwater, Dalarna, Sweden, Clays and Clay Minerals, vol.45, issue.2, pp.261-273, 1997.
DOI : 10.1346/CCMN.1997.0450214

V. Chawla, P. G. Gurbuxani, G. R. Bhagure, and J. M. Mater, Corrosion of Water Pipes: a Comprehensive Study of Deposits, Journal of Minerals and Materials Characterization and Engineering, vol.11, issue.05, pp.479-492, 2012.
DOI : 10.4236/jmmce.2012.115034

R. A. Antunes, I. Costa, and D. L. Araujo-de-faria, Characterization of corrosion products formed on steels in the first months of atmospheric exposure, Materials Research, vol.32, issue.3, pp.403-408, 2003.
DOI : 10.1016/0010-938X(91)90073-X

P. Sigalevich, M. V. Baev, A. Teske, and Y. Cohen, Sulfate Reduction and Possible Aerobic Metabolism of the Sulfate-Reducing Bacterium Desulfovibrio oxyclinae in a Chemostat Coculture with Marinobacter sp. Strain MB under Exposure to Increasing Oxygen Concentrations, Applied and Environmental Microbiology, vol.66, issue.11, pp.5013-5018, 2000.
DOI : 10.1128/AEM.66.11.5013-5018.2000

M. Bouchar, E. Foy, D. Neff, and P. Dillmann, The complex corrosion system of a medieval iron rebar from the Bourges??? Cathedral. Characterization and reactivity studies, Corrosion Science, vol.76, pp.361-372, 2013.
DOI : 10.1016/j.corsci.2013.07.007

J. Chivot, Thermodynamique des produits de corrosion : fonctions thermodynamiques, diagrammes de solubilité, diagrammes E-pH des systems Fe-H2O, -H2O et Ni-H2O en fonction de la température, Collection Sciences et Techniques, 2004.

A. Zegeye, C. Mustin, and F. Jorand, Bacterial and iron oxide aggregates mediate secondary iron mineral formation: green rust versus magnetite, Geobiology, vol.24, issue.13S, pp.209-222, 2010.
DOI : 10.1128/9781555818098.ch1

J. M. Zachara, R. K. Kukkadapu, J. K. Fredrickson, Y. A. Gorby, and S. C. Smith, Biomineralization of Poorly Crystalline Fe(III) Oxides by Dissimilatory Metal Reducing Bacteria (DMRB), Geomicrobiology Journal, vol.58, issue.2, pp.179-207, 2002.
DOI : 10.4141/cjss73-037