V. Fell and M. Ward, Iron sulphides ? : Corrosion products on artifacts from waterlogged deposits, Met. 98 Conf. Met. Conserv., James and James, 1998.

Y. Fors, F. Jalilehvand, E. Damian-risberg, C. Björdal, E. Phillips et al., Sulfur and iron analyses of marine archaeological wood in shipwrecks from the Baltic Sea and Scandinavian waters, Journal of Archaeological Science, vol.39, issue.7, pp.2521-2532, 2012.
DOI : 10.1016/j.jas.2012.03.006

Y. Fors, T. Nilsson, E. D. Risberg, M. Sandström, and P. Torssander, Sulfur accumulation in pinewood (Pinus sylvestris) induced by bacteria in a simulated seabed environment: Implications for marine archaeological wood and fossil fuels, International Biodeterioration & Biodegradation, vol.62, issue.4, pp.336-347, 2008.
DOI : 10.1016/j.ibiod.2007.11.008

V. S. Sastri, 5 -Corrosion processes and the use of corrosion inhibitors in managing corrosion in underground pipelines A2 -Orazem, Mark E., in : Undergr. Pipeline Corros, pp.127-165

B. James and A. Hudgins, Chapter 1 -Failure analysis of oil and gas transmission pipelines A2 - Aliofkhazraei, Handb. Mater. Fail. Anal. Case Stud. Oil Gas Ind, pp.1-38
DOI : 10.1016/b978-0-08-100117-2.00001-7

C. Chautard, J. Lartigue, M. Libert, F. Marsal, and L. D. Windt, An Integrated Experiment Coupling Iron/Argillite Interactions with Bacterial Activity, Procedia Chemistry, vol.7, pp.641-646, 2012.
DOI : 10.1016/j.proche.2012.10.097

URL : https://hal.archives-ouvertes.fr/hal-00747917

W. Sun and S. Ne?i´ne?i´c, A Mechanistic Model of Uniform Hydrogen Sulfide/Carbon Dioxide Corrosion of Mild Steel, CORROSION, vol.65, issue.5, pp.291-307, 2009.
DOI : 10.5006/1.3319134

Y. Zheng, B. Brown, and S. Ne?i´ne?i´c, S Corrosion of Mild Steel, CORROSION, vol.70, issue.4, pp.351-365, 2013.
DOI : 10.5006/0937

D. E. Canfield, Isotope fractionation by natural populations of sulfate-reducing bacteria, Geochimica et Cosmochimica Acta, vol.65, issue.7, pp.1117-1124, 2001.
DOI : 10.1016/S0016-7037(00)00584-6

M. S. Sim, T. Bosak, and S. Ono, Large Sulfur Isotope Fractionation Does Not Require Disproportionation, Science, vol.70, issue.23, pp.74-77, 2011.
DOI : 10.1016/j.gca.2006.07.031

G. Antler, A. V. Turchyn, V. Rennie, B. Herut, and O. Sivan, Coupled sulfur and oxygen isotope insight into bacterial sulfate reduction in the natural environment, Geochimica et Cosmochimica Acta, vol.118, pp.98-117, 2013.
DOI : 10.1016/j.gca.2013.05.005

M. C. Stam, Sulfur isotopes as a tracer for biogenic sulfate reduction in natural environments : A link between modern and ancient ecosystems, 2010.

C. Kendall and E. A. Caldwell, Fundamentals of Isotope Geochemistry, pp.51-86, 1998.
DOI : 10.1016/B978-0-444-81546-0.50009-4

H. G. Thode, J. Monster, and H. B. Dunford, Sulphur isotope geochemistry, Geochimica et Cosmochimica Acta, vol.25, issue.3, pp.159-174, 1961.
DOI : 10.1016/0016-7037(61)90074-6

URL : http://www.geosc.psu.edu/Courses/Geosc518/4_Sample_Prep/Chapter_4/4_6_Sulfur/4_6_1_SO2/4_6_1_4_SO2_Organic/Papers/Thode%20et%20al%201961.pdf

Y. Kajiwara, H. R. Krouse, and A. Sasaki, Experimental study of sulfur isotope fractionation between coexistent sulfide minerals, Earth and Planetary Science Letters, vol.7, issue.3, pp.271-277, 1969.
DOI : 10.1016/0012-821X(69)90064-8

P. Aharon and B. Fu, Microbial sulfate reduction rates and sulfur and oxygen isotope fractionations at oil and gas seeps in deepwater Gulf of Mexico, Geochimica et Cosmochimica Acta, vol.64, issue.2, pp.233-246, 2000.
DOI : 10.1016/S0016-7037(99)00292-6

D. E. Canfield, C. A. Olesen, and R. P. Cox, Temperature and its control of isotope fractionation by a sulfate-reducing bacterium, Geochimica et Cosmochimica Acta, vol.70, issue.3, pp.548-561, 2006.
DOI : 10.1016/j.gca.2005.10.028

J. Kleikemper, M. H. Schroth, S. M. Bernasconi, B. Brunner, and J. Zeyer, Sulfur isotope fractionation during growth of sulfate-reducing bacteria on various carbon sources, Geochimica et Cosmochimica Acta, vol.68, issue.23, pp.4891-4904, 2004.
DOI : 10.1016/j.gca.2004.05.034

T. Ding, S. Valkiers, H. Kipphardt, P. Debì-evre, P. D. Taylor et al., Calibrated sulfur isotope abundance ratios of three IAEA sulfur isotope reference materials and V-CDT with a reassessment of the atomic weight of sulfur, Geochimica et Cosmochimica Acta, vol.65, issue.15, pp.2433-2437, 2001.
DOI : 10.1016/S0016-7037(01)00611-1

C. Chautard, Intéractions fer/argile en conditions de stockage géologique profond -Impacts d'activités bactériennes et d'hétérogénéités, Thèse, 2013.

C. Beaucaire, J. Michelot, S. Savoye, and J. Cabrera, Groundwater characterisation and modelling of water???rock interaction in an argillaceous formation (Tournemire, France), Applied Geochemistry, vol.23, issue.8, pp.2182-2197, 2008.
DOI : 10.1016/j.apgeochem.2008.03.003

URL : https://hal.archives-ouvertes.fr/hal-00357173

S. Marlier, Arles-Rhône 3 : un chaland gallo-romain du Iersì ecle aprèsJésus-Christ, p.2014

J. Bourdoiseau, M. Jeannin, R. Sabot, C. Rémazeilles, and P. Refait, Characterisation of mackinawite by Raman spectroscopy: Effects of crystallisation, drying and oxidation, Corrosion Science, vol.50, issue.11, pp.3247-3255, 2008.
DOI : 10.1016/j.corsci.2008.08.041

J. Bourdoiseau, M. Jeannin, C. Rémazeilles, R. Sabot, and P. Refait, The transformation of mackinawite into greigite studied by Raman spectroscopy, Journal of Raman Spectroscopy, vol.51, issue.3, pp.496-504, 2011.
DOI : 10.1016/j.corsci.2009.07.001

S. N. White, Laser Raman spectroscopy as a technique for identification of seafloor hydrothermal and cold seep minerals, Chemical Geology, vol.259, issue.3-4, pp.240-252, 2009.
DOI : 10.1016/j.chemgeo.2008.11.008

A. Gaudin, S. Gaboreau, E. Tinseau, D. Bartier, S. Petit et al., Mineralogical reactions in the Tournemire argillite after in-situ interaction with steels, Applied Clay Science, vol.43, issue.2, pp.196-207, 2009.
DOI : 10.1016/j.clay.2008.08.007

URL : https://hal.archives-ouvertes.fr/hal-00488937

M. Descostes, Evaluation d'une perturbation oxydante en milieu argileux ? : mécanisme d'oxydation de la pyrite (FeS2, Thèse, 2001.

R. A. Berner, Sedimentary pyrite formation, American Journal of Science, vol.268, issue.1, pp.1-23, 1970.
DOI : 10.2475/ajs.268.1.1

G. Beaudoin, B. E. Taylor, D. Rumble, I. , and M. Thiemens, Variations in the sulfur isotope composition of troilite from the Ca??on Diablo iron meteorite, Geochimica et Cosmochimica Acta, vol.58, issue.19, pp.4253-4255, 1994.
DOI : 10.1016/0016-7037(94)90277-1

R. T. Wilkin and H. L. Barnes, Formation processes of framboidal pyrite, Geochimica et Cosmochimica Acta, vol.61, issue.2, pp.323-339, 1997.
DOI : 10.1016/S0016-7037(96)00320-1

I. B. Butler and D. Rickard, Framboidal pyrite formation via the oxidation of iron (II) monosulfide by hydrogen sulphide, Geochimica et Cosmochimica Acta, vol.64, issue.15, pp.2665-2672, 2000.
DOI : 10.1016/S0016-7037(00)00387-2

A. G. Wikjord, T. E. Rummery, F. E. Doern, and D. G. Owen, Corrosion and deposition during the exposure of carbon steel to hydrogen sulphide-water solutions, Corrosion Science, vol.20, issue.5, pp.651-671, 1980.
DOI : 10.1016/0010-938X(80)90101-8

S. Hunger, R. J. Newton, S. Bottrell, and L. G. Benning, The formation and preservation of greigite, Geochimica et Cosmochimica Acta, vol.70, issue.18, p.273, 2006.
DOI : 10.1016/j.gca.2006.06.550

S. Hunger and L. G. Benning, Greigite: a true intermediate on the polysulfide pathway to pyrite, Geochemical Transactions, vol.8, issue.1, pp.1-20, 2007.
DOI : 10.1186/1467-4866-8-1

D. Rickard and G. W. Luther, Chemistry of Iron Sulfides, Chemical Reviews, vol.107, issue.2, pp.514-562, 2007.
DOI : 10.1021/cr0503658