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We constrain effective field theories by going beyond the familiar positivity bounds that follow from
unitarity, analyticity, and crossing symmetry of the scattering amplitudes. As interesting examples,
we discuss the implications of the bounds for the Galileon and ghost-free massive gravity. The
latter is ruled out by our theoretical bounds when combined with the experimental constraints on
the graviton mass and from fifth-force experiments, given the impossibility to consistently implement
the Vainshtein mechanism. We also show that the Galileon theory must contain symmetry-breaking
terms that are at most one-loop suppressed compared to the symmetry-preserving ones.

I. INTRODUCTION AND SUMMARY

The idea that physics at low energy can be described in
terms of light degrees of freedom alone is one of the most
satisfactory organising principle in physics, which goes
under the name of Effective Field Theory (EFT). A quan-
tum field theory (QFT) can be viewed as the trajectory
in the renormalization group (RG) flow from one EFT to
another one, each being well described by an approximate
fixed point where the local operators are classified mainly
by their scaling dimension. The effect of ultraviolet (UV)
dynamics is systematically accounted for in the resulting
infrared (IR) EFT by integrating out the heavy degrees
of freedom which generate an effective Lagrangian made
of infinitely many local operators. Yet, EFTs are predic-
tive even when the UV dynamics is unknown, because in
practice only a finite number of operators contributes, at
a given accuracy, to observable quantities. The higher
the operator dimension, the smaller the effect at low en-
ergy.

In fact, extra information about the UV is always
available: the underlying Lorentz invariant microscopic
QFT is unitary, causal and local. These principles are
stirred in the fundamental properties of the S-matrix
such as unitarity, analyticity, crossing symmetry, and
polynomial boundedness. These imply a UV-IR con-
nection in the form of dispersion relations that link the
(forward) amplitudes in the deep IR with the disconti-
nuity across the branch cuts integrated all the way to
infinite energy [1, 2]. Unitarity ensures the positivity
of such discontinuities, and in turn the positivity of
(certain) Wilson coefficients associated to the operators
in the EFT Lagrangian. This UV-IR connection can be
used to show that “wrong-sign” Wilson coefficients in the
IR can not be generated by a Lorentz invariant, unitary,
casual, and local UV completion, as it was emphasised
e.g. in [3]. These positivity bounds have found several
applications, including the proof of the a-theorem

[4, 5], the study of chiral perturbation theory [6], WW -
scattering and theories of composite Higgs [7–11], as
well as bounds on quantum gravity [12], massive gravity
[13–15], Galileons [15–18], inflation [19, 20], the weak
gravity conjecture [21, 22] and conformal field theory
[23–25]. The approach has been recently extended to
particles of arbitrary spin [15], with applications to
massive gravity and the EFT of a Goldstino [26–28],
and the formulation of a general no-go theorem on the
leading energy-scaling behavior of the amplitudes in
the IR [15]. Ref.’s [16, 29, 30] extended this technique
beyond the forward limit, providing an infinite series of
positivity constraints for amplitudes of arbitrary spin.

FIG. 1. Exclusion region for massive gravity. The gray region
is theoretically excluded by our lower bound Eq. (38) with ac-
curacy δ = 1%. The colored lines represent the physical cut-
off away from the red region, where a Vainshtein mechanism
could be consistently implemented. Fifth-force experiments
probe the mm scale (excluding the orange region); the hori-
zontal dashed line represents the experimental upper bound
on the graviton mass.

In this paper we show that bounds stronger than stan-
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dard positivity constraints can be derived by taking into
account the irreducible IR cross-sections under the dis-
persive integral, which are calculable within the EFT.
In models where the forward amplitude is suppressed
(e.g. Galileons), or the high-energy scattering is gov-
erned by strong, but soft, dynamics (massive gravity,
dilaton, WZW-like theories [38]), as well as models with
suppressed 2 → 2 (but enhanced 2 → 3), our bounds
are dramatically stronger. These bounds can be used to
place rigorous upper limits on the cutoff scale for certain
EFT’s or constrain the relevant couplings, in a way that is
somewhat reminiscent of the revived S-matrix bootstrap
approach in four dimensions [31]. The procedure we use
was originally suggested in [17], and later employed to
estimate order-of-magnitude bounds [15, 16]; here we ex-
tend these arguments to sharp inequalities and bring this
technique beyond amplitudes’ positivity.

We discuss explicitly two relevant applications of the
bounds: the EFT for a weakly broken Galileon [32, 33],
and the ghost-free massive gravity theory [34, 35], known
also as dRGT massive gravity, or Λ3-theory (Λ3 is the
mass scale that remains in the decoupling limit for the
scalar Galileon mode). Despite the encouraging recent
results on the positivity conditions that ghost-free mas-
sive gravity must satisfy [13], our constraints provide a
much stronger, and yet theoretically robust, lower bound
on the graviton mass m. Indeed, our dispersion relations
imply that the forward elastic amplitudes, that are sup-
pressed by m at fixed Λ3, must nevertheless be larger
than a factor times the unsuppressed elastic or inelas-
tic cross-sections. Resolving this tension requires a non-
trivial lower bound for the graviton mass. Under the
customarily accepted assumption that Λ3 is the cutoff of
the theory in Minkowski background, i.e. away from all
massive sources, this lower bound reads m & 100 keV,
which is grossly excluded observationally. Even relax-
ing this assumption and lowering the cutoff even further
(i.e. taking hierarchically separated values for the actual
cutoff Λ and the scale Λ3 evaluated in Minkowski), we
show that the dRGT massive gravity theory does not sur-
vive the combination of our bound with the experimental
constraints on the graviton mass, unless a (presently un-
known) mechanism other than the Vainshtein screening
is at play. We anticipate these results in Fig. 1.

In the following, we begin by deriving the new bounds
in full generality, and then apply them to the Galileon
theory, showing that Galileon-symmetry-breaking terms
can not be arbitrarily small. This naturally leads us to
ghost-free massive gravity, where we find the most dra-
matic implications of the bounds; other applications are
discussed in the conclusion.

II. DISPERSION RELATIONS

Let us consider the center-of-mass 2-to-2 scattering
amplitudeMz1z2z3z4(s, t) where the various polarization
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FIG. 2. Integration contours in the complex s-plane at fixed
t = 0, with poles at s1 = M2 and s2 = 4m2 −M . The point
s = µ2 is on the real axis between the branch-cuts shown in
red.

functions are labeled zi. The Mandelstam variables1

are defined by s = −(k1 + k2)2, t = −(k1 + k3)2,
u = −(k1+k4)2 and satisfy s+t+u = 4m2, wherem is the
mass of the scattered particles (all of the same species for
easy of presentation). Our arguments will require finite
m 6= 0. Yet, they hold even for some massless theories
(scalars, spin-1/2 fermions, and softly broken U(1) gauge
theories), which have a smooth limit m → 0 at least for
the highest helicities, so that the bound can be derived
with an arbitrarily small but finite mass, before taking
the zero limit. We call,

Mz1z2(s) ≡Mz1z2z1z2(s, t = 0) , (1)

the forward elastic amplitude at t = 0, and integrate
Mz1z1(s)/(s−µ2)3 along a closed contour Γ in the com-
plex s-plane, enclosing all the physical IR-poles si asso-
ciated to the stable light degrees of freedom exchanged
in the scattering (or its crossed-symmetric process), to-
gether with the point s = µ2 lying on the real axis be-
tween s = 0 and s = 4m2,

Σz1z2IR ≡ 1

2πi

∮
Γ

ds
Mz1z2(s)

(s− µ2)3
, (2)

see Fig. 2. The Σz1z2IR is nothing but the sum of the IR
residues,

Σz1z2IR =
∑

Res
s=si,µ2

[
Mz1z2(s)

(s− µ2)3

]
, (3)

1 We use the mostly-plus Minkowski metric (−,+,+,+),
work with the relativistic normalization of one-particle states
〈p, z|p′z′〉 = (2π)δ3(p−p′)2E(p)δzz′ , and define theM operator
from the S-matrix operator, S = 1 + (2π)4δ4(

∑
ki)iM.
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and it is therefore calculable within the EFT. Using the
Cauchy integral theorem we deform the contour integral

into Γ̂ that runs just around the s-channel and u-channel
branch-cuts, and goes along the big circle eventually sent
to infinity.

The polynomial in the denominator of Eq. (2) has the
lowest order that ensures the convergence of the disper-
sive integral in the UV, a consequence of the Froissart-
Martin asymptotic bound |M(s→∞)| < const ·s log2 s,
which is always satisfied in any local massive QFT [36,
37]. Thus lims→∞ |M(s)|/s2 → 0, and we can drop this
contribution and write Σz1z2IR as an integral of the discon-
tinuity DiscMz1z2(s) ≡ Mz1z2(s + iε) −Mz1z2(s − iε)
along the branch-cuts,

Σz1z2IR =
1

2πi

(∫ ∞
4m2

ds+

∫ 0

−∞
ds

)
DiscMz1z2(s)

(s− µ2)3
. (4)

The integral along the u-channel branch-cut runs over
non-physical values of s = (−∞, 0), but can be expressed
in terms of another physical amplitude, involving anti-
particles (identified by a bar over the spin label, i.e. z̄),
and related to the former by crossing. Indeed, crossing
particle 1 and 3 in the forward elastic limit t = 0, im-
plies [15],

Mz1z2(s) =M−z̄1z2(u = −s+ 4m2) (helicity basis)

Mz1z2(s) =Mz̄1z2(u = −s+ 4m2) (linear basis)

We will work in the helicity basis notation and recall that
for −z̄ → z̄ we recover the results for linear polarizations.
Moreover, for particles that are their own antiparticles,
z̄ = z.

Finally, amplitudes are real functions of complex vari-
ables, i.e. M(s)∗ = M(s∗), so that the discontinuities
are proportional to the imaginary part, and one obtains
the dispersion relation between IR and UV:

Σz1z2IR =

∫ ∞
4m2

ds

π

(
ImMz1z2(s)

(s− µ2)3
+

ImM−z̄1z2(s)

(s− 4m2 + µ2)3

)
. (5)

III. POSITIVITY AND BEYOND

Unitarity of the S-matrix implies the optical theorem,

ImMz1z2(s) = s
√

1− 4m2/s · σz1z2tot (s) > 0 , (6)

where σz1z2tot (s) is the total cross-section σz1z2tot =∑
X σ

z1z2→X . So, the imaginary parts in the integrand
Eq. (5) are strictly positive for any theory where particles

1 and 2 are interacting, as long as 0 < µ2 < 4m2. Thus
one obtains the rigorous positivity bound,

Σz1z2IR > 0 . (7)

Since Σz1z2IR is calculable in the IR in terms of the Wilson
coefficients, Eq. (7) provides a non-trivial constraint on
the EFT.

As a simple example consider the theory of a pseudo-
Goldstone boson π, from an approximate global U(1)
symmetry which is broken spontaneously in the IR. The
effective Lagrangian reads LEFT = − 1

2 (∂π)2+ λ
Λ4 [(∂π)2+

. . .]2−ε2π2
(
Λ2 + c(∂π)2 + . . .

)
, where Λ is the cutoff and

λ ∼ O(1) (or even larger should the underlying dynam-
ics be strongly coupled). The parameters that break the
approximate Goldstone shift symmetry π → π + const
are instead suppressed, naturally, by ε� 1. In any case,
from an EFT point of view, both signs of λ are consistent
with the symmetry; however ΣIR = λ/2Λ4, so that only
λ > 0 is consistent with the positivity bound (7). Uni-
tary, local, causal and Lorentz invariant UV completions
can generate only positive λ in the IR [3]. Important
for our arguments below, is that this statement is irre-
spective of the soft deformations ∼ ε: the limit ε → 0 is
smooth.

Like in the previous example, ΣIR is often calculable
within the tree-level EFT where the only discontinuity
in the amplitude MEFT are simple poles. In such a case
we can use again Cauchy theorem on the tree-level EFT
amplitude so that ΣIR is more promptly calculated as
minus the residue at infinity [13],

Σz1z2IR = −Res
s=∞

[
MEFT(s)

(s− µ2)3

]
(8)

up to small tiny corrections. In addition, for amplitudes
that scale as MEFT(s) ∼ s2 for large s and t = 0 (as
in e.g. the Galileon and ghost-free massive gravity),
we have Σz1z2IR = 1/2(∂2MEFT/∂s2)|m2�s. In this
case, the left-hand side of the dispersion relation (5)
is µ2-independent and one can thus drop µ2 from the
right-hand side too.

So far we invoked very general principles of QFT and
derived positivity constraints on EFT’s. We can in fact
extract more than positivities by noticing that the total
cross-section on the right-hand side of the dispersion re-
lation contains an irreducible contribution from the IR
physics, which is calculable within the EFT by construc-
tion. The other contributions, e.g. those from the UV,
are uncalculable with the EFT but are nevertheless al-
ways strictly positive, by unitarity. Moreover, each final
state X in the total cross-section contributes positively
too. Therefore, an exact inequality follows from truncat-
ing the right-hand side of (5) at some energy E2 � Λ2

below the cutoff Λ of the EFT,
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Σz1z2IR >
∑
X

∫ E2

4m2

ds

π

√
1− 4

m2

s

[
sσz1z2→X(s)

(s− µ2)3
+

sσ−z̄1z2→X(s)

(s− 4m2 + µ2)3

]
IR

. (9)

Both sides are now calculable, hence the subscript IR.
The Σz1z2IR must not only be positive but strictly big-
ger than something which is itself positive and calculable
within the EFT. Moreover we can retain any subset X of
final states, independently on whether they are elastic or
inelastic: the more channels and information are retained
in the IR the more refined the resulting bound will be.

The information provided by our bound (9), is max-
imized in theories where the elastic forward amplitude
Mz1z2 , which appears in the lefthand side, is parametri-
cally suppressed compared to the non-forward or inelastic
ones (that isMz1z2z1z2(s, t 6= 0),Mz1z2z3z4(s, t), or more
generally Mz1z2→X), that appear in the righthand side.
This tension results in constraints on the couplings and
masses of the EFT, that include and go beyond the posi-
tivity of ΣIR. Galileons, for examples, have a suppressed
forward amplitude: the would-be leading stu-term actu-
ally vanishes at t = 0 and the amplitude is thus sensi-
tive to the small Galileon-symmetry breaking terms. On
the other hand, neither the Galileon elastic cross-section
nor the right-hand side of (9) are suppressed. Massive
gravity, dilaton, WZW-like theories [38], as well as other
models where 2 → 2 is suppressed while 2 → 3 is not,
are other simple examples of theories that get non-trivial
constraints from our bound Eq. (9). Even in situations
without parametric suppression, our bound carries im-
portant information: it links elastic and inelastic cross
sections that might depend on different Wilson coeffi-
cients in the EFT.

Amplitudes in an EFT means finite, yet systemati-
cally improvable, accuracy δ in the calculation. The
main source of error for small masses is the truncation of
the tower of higher dimensional operators. For example,
working to the leading order (LO) in powers of (E/Λ)2,
(m/E)2 (and hence (µ/E)2), the bound (9) takes a sim-
pler form

Σz1z2IR ,LO>
∑
X

∫ E2

ds

πs2

[
σz1z2→X(s) + σz1−z̄2→X(s)

]
IR ,LO

×

[
1 + o

(m
E

)2

+ o

(
E

Λ

)2
]

(10)

where the error from the truncation

o

(
E

Λ

)2

=

(
cUV + o(1)

g2
∗

16π2
ln
E

Λ

)(
E

Λ

)2

+ . . . (11)

is controlled by the (collective) coupling g∗ of the IR-
theory that renormalizes the higher dimensional opera-
tors that come with (unknown) Wilson coefficients cUV ∼

o(1).2 The IR-running effects from Λ to E are an irre-
ducible (yet improvable) source of error, whereas the UV
contribution is model dependent.

Choosing E at or slightly below the cutoff scale
Λ gives just an order of magnitude estimate for the
bound [15, 16]. A rigorous bound can instead be defined
even for large couplings g∗ ∼ 4π and cUV ∼ 1, just by
choosing a sufficiently small (E/Λ)2. Percent accuracy
can be achieved already with E/Λ ∼ 1/10. Of course,
nothing except more demanding calculations prevents us
to reduce the error by working to all order in the mass,
or including next-to-next-to. . . next-to-LO corrections so
that the truncation of the EFT (or the running couplings)
affects the result only by an even smaller relative error,
loops− factors× o(E/Λ)n 3.

IV. GALILEON

Let us consider the amplitude

M(s, t) = g2
∗

[
−3

stu

Λ6
+ ε2

s2 + t2 + u2

2Λ4
+ . . .

]
(12)

for a single scalar π whose hard-scattering limit is o(s3),
whereas the forward scattering is o(s2) and suppressed by
ε2 � 1. The cutoff Λ corresponds to a physical threshold
for new states propagating on-shell, i.e. the location of
the first non-analyticity in the complex s-plane which is
not accounted by loops of π. We have factored out the
overall coupling constant g2

∗ to make clear the distinction
between the physical cutoff Λ and other scales not asso-
ciated to physical masses, such as decay constants, see
Appendix A.

Eq. (12) gives ΣIR = g2
∗ε

2/Λ4 and σππ→ππ =
3g4
∗s

5/(320πΛ12) + . . . 4 so that the bound (10) is

ε2 >
3

40

(
g2
∗

16π2

)(
E

Λ

)8

, (13)

2 In our perspective, cUV � 1 would just signal the misidentifi-
cation of what the actual LO hard-scattering amplitude is, and
would require inclusion of the operators with large cUV within
the LO amplitude.

3 In addition, the LO may possibly receive corrections from the
logarithmic running of LO couplings. In the examples where our
bounds are interesting, symmetry are often at play and the LO
operators do not actually get renormalized, except from small
explicit breaking effects.

4 Curiously, there is a mild violation of the naive-dimensional anal-
ysis estimate ε2NDA >

(
9g2∗/16π2

)
(E/Λ)8 [15] due to a 10% can-

cellation in the phase-space integral 1/2
∫ 1
−1 d cos θ|stu|2 which

returns s6(1/3 + 1/5− 1/2) = s6/30 rather than o(1)s6.
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up to the relative error (11). The lesson to be learnt here
is that s2-terms in the amplitude can not be too much
suppressed compared to the the s3-terms.

Choosing e.g. a 30%-accuracy on the overall factor
(E/Λ)

8 ∼ 10−2 (loosely speaking corresponding to a “3-
sigma” claim), one gets that ε2 > 10−3(1 ± 30%) for a
fully strongly coupled theory g∗ = 4π. A claim valid at
“1-sigma” corresponds to setting E ∼ Λ, that is accept-
ing o(1) corrections: ε2 & g2

∗/(16π2).
The weakly broken Galileon Lagrangian [32, 33]

L = −1

2
(∂µπ)2

[
1 +

c3
Λ3
�π +

c4
Λ6

(
(�π)2 − (∂µ∂νπ)

2
)

+c5 (. . .)
]

+
λ

4Λ4
[(∂π)2]2 − m2

2
π2 (14)

has suppressed Galileon symmetry-breaking terms λ �
c23, c4 and m2 � Λ2. It reproduces the scattering ampli-
tude (12) with the identification

c23 − 2c4 = 4g2
∗ ,

λ

Λ4
+
c23m

2

2Λ6
=
g2
∗ε

2

Λ4
= ΣIR . (15)

In the massless limit, or more generally for c23m
2/Λ2 �

λ (which is fully natural given that λ preserves a shift
symmetry while m2 does not), the bound (13) tells that
λ is not only positive, but (parametrically) at most one-
loop factor away from (c23 − 2g4)/4

λ >
3

640

(
c23 − 2c4

)2
16π2

(
E

Λ

)8

. (16)

For a massive Galileon with negligible λ one gets that
c3 > 0 and that the mass is bounded below

m2 > Λ2

(
3

320

)
(c3 − 2c4/c3)

2

16π2

(
E

Λ

)8

(17)

where (E/Λ)
8 ∼ 10−2 for a 30% accuracy on the overall

factor.

V. MASSIVE GRAVITY

The previous bounds on Galileons are unfortunately
not directly applicable to cosmological models of modi-
fied gravity, which contain other IR degrees of freedom
affecting ΣIR significantly, such as e.g. a massless gravi-
ton like in Horndeski theories [39]. In that case both size
of the inequality would be ill-defined at the Coulomb
singularity t = 0 because of the massless spin-2 state
exchanged in the t-channel. Alternative ideas or ex-
tra assumptions are needed for a massless graviton, see
e.g. [12, 40, 47, 48].

In a massive gravity theory the situation is instead
more favourable as a finite graviton mass has a double
role: it regulates the IR singularity and tips the s2-term
(vanishing in the forward and decoupling limit) to either
positive or negative values, depending on the parame-
ters of the theory that get therefore constrained by the

positivity of ΣIR > 0 [13]. Notice that one can not di-
rectly interpret the results obtained above for the scalar
Galileon mode as the longitudinal component of the mas-
sive graviton as the IR dynamics is different: for example,
the helicity-2 mode in t-channel gives a contribution to
the amplitude that is as large as the contribution from
the Galileon scalar modes. Ghost-free massive gravity
has to be studied in its completeness [34, 35] (for reviews
see [41, 42]),

S =

∫
d4x
√
−g
[
m2

Pl

2
R− m2

Plm
2

8
V (g, h)

]
(18)

where mPl = (8πG)−1/2 is the reduced Planck mass,
gµν = ηµν + hµν is an effective metric written in term
of the Minkowski metric ηµν (with mostly + signature)
and a spin-2 graviton field hµν in the unitary gauge, R
is the Ricci scalar for gµν , and V (g, h) = V2 + V3 + V4 is
the soft graviton potential

V2(g, h) =b1〈h2〉+ b2〈h〉2 (19)

V3(g, h) =c1〈h3〉+ c2〈h2〉〈h〉+ c3〈h〉3 (20)

V4(g, h) =d1〈h4〉+ d2〈h3〉〈h〉+ d3〈h2〉2 (21)

+ d4〈h2〉〈h〉2 + d5〈h〉4

with 〈h〉 ≡ hµνg
µν , 〈h2〉 ≡ gµνhνρg

ρσhσµ,. . . The coeffi-
cients depend on just two parameters, c3 and d5, after
imposing the ghost-free conditions

b1 = 1 , b2 = −1 (22)

c1 = 2c3 +
1

2
, c2 = −3c3 −

1

2
, (23)

d1 = −6d5 +
3

2
c3 +

5

16
, d2 = 8d5 −

3

2
c3 −

1

4
, (24)

d3 = 3d5 −
3

4
c3 −

1

16
, d4 = −6d5 +

3

4
c3 . (25)

Since the graviton is its own antiparticle, it is con-
venient to work with linear polarizations that make the
crossed amplitudes, and in turn the bound, neater [12,
13, 15]. For example, the LO bound with linear polar-
izations reads

Σz1z2IR ,LO >
∑
X

2

π

∫ E2

ds

s2

[
σz1z2→X(s)

]
IR ,LO

. (26)

Adopting the basis of polarizations reported in the ap-
pendix B, we have two tensor polarizations (T , T ′) that
do not grow with energy, two vector polarizations (V ,
V ′) that grow linearly with energy, and one scalar polar-
ization (S) that grows quadratically with the energy.

We calculate the amplitudes for different initial and
final state configurations and find that Σz1z2IR ∼ m2/Λ6

3

is suppressed by the small graviton mass, where Λ3 ≡
(m2mPl)

1/3. On the other hand, we find that the cross-
sections are not generically suppressed by m: hence, a
small mass is at odd with our bound Eq. (26). Resolv-
ing this tension results into non-trivial constraints on the
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theory, beyond the positivity bounds derived in [13]. In
particular, the amplitudes for SS, V V, V V ′, V S elastic
scatterings, have the following suppressed residues,

ΣSSIR =
2m2

9Λ6
3

(7− 6c3(1 + 3c3) + 48d5) > 0 (27)

ΣV VIR =
m2

16Λ6
3

(
5 + 72c3 − 240c23

)
> 0 (28)

ΣV V
′

IR =
m2

16Λ6
3

(
23− 72c3 + 144c23 + 192d5

)
> 0 (29)

ΣV SIR =
m2

48Λ6
3

(
91− 312c3 + 432c23 + 384d5

)
> 0 . (30)

In contrast the hard-scattering limits of the amplitudes,
that enters the RHS of Eq. (26), is unsuppressed. For
s, t� m2,

MSSSS =
st(s+ t)

6Λ6
3

(1− 4c3(1− 9c3) + 64d5)

MV V V V =
9st(s+ t)

32Λ6
3

(1− 4c3)2

MV V ′V V ′
=

3t3

32Λ6
3

(1− 4c3)2 (31)

MV SV S =
3t

4Λ6
3

(
c3(1− 2c3)(s+ st− t2)

− 5s2 + 5st− 9t2

72

)
It is convenient to recall also the bound

m2

36Λ6
3

(
35 + 60c3 − 468c23 − 192d5

)
> 0 (32)

which follows from the positivity of the residue of
maximally-mixed ST polarizations, i.e. (with a slighly
abuse of notation) ΣTTIR + ΣSSIR + 2ΣTSTSIR + 4ΣTTSSIR > 0,
where the expressions for these ΣIR, that we have explic-
itly reproduced, are given in [13].

At this point we chose the arbitrary energy scale E of
Eq. (26) between the cutoff, E � Λ, so that the EFT
calculation for the right-hand side of (26) is trustworthy,
and the mass E � m, so that the EFT hard-scattering
amplitudes Eq. (31) are dominating the cross-sections.
We define,

δ ≡
(
E

Λ

)2

(33)

that controls the accuracy of the EFT calculation, and
obtain,

Fi(c3, d5) >

(
4πmPl

m

)( g∗
4π

)4

δ6 , (34)

where we have defined

g∗ ≡
(

Λ

Λ3

)3

. (35)

The functions Fi(c3, d5) are

FSS =

[
960

7− 6c3(1 + 3c3) + 48d5

(1− 4c3(1− 9c3) + 64d5)
2

]3/2

,

FV V =

[(
2560

27

)
5 + 72c3 − 240c23

(1− 4c3)4

]3/2

, (36)

FV V ′ =

[(
896

9

)
23− 72c3 + 144c23 + 192d5

(1− 4c3)4

]3/2

,

FV S =

[
80640

(
91− 312c3 + 432c23 + 384d5

)
1975− 29808c3(1− 2c3)(1− 4c3 + 8c23)

]3/2

.

The four inequalities following from Eq. (34), are the
main result of this section: they imply lower bounds on
the graviton mass, which can not be arbitrarily small
compared to 4πmPl (which, incidentally, is the largest
cutoff for quantum gravity) for a fixed g∗. These bounds
represent the very much improved, sharper, and more
conservative version of the rough estimate done in [15].
As we discuss below, g∗ cannot be taken arbitrarily small
either.

Implications

The bounds Eq. (34) can be read in two ways: as con-
straints on the plane (c3, d5) of the graviton potential
parameters, for a given graviton mass m and a given ra-
tio (Λ/Λ3)3 = g∗, or as an absolute constraint on g∗ for
a given m, independently of c3 and d5, by finding the
maximum of Fi(c3, d5).

We begin with a discussion of the bounds on the pa-
rameters c3 and d5 inside Fi. The experimental up-
per limit on the graviton mass is extremely stringent,
m . 10−32 − 10−30 eV, depending on the type of ex-
periment and theory assumptions behind it (see [45] for
a critical discussion). Taking this as input, we show in
Fig. 3 the constraints on c3 and d5, for a given g∗; the
colored regions being allowed by our constraints. The
yellow region are nothing but the standard positivity
constraints (27, 28, 29, 30, 32). For g∗ & 10−9 (cor-
responding to situations where Λ and Λ3 are less than
a factor ∼ 1000 away from each other, see Eq. (35),
our bounds do not admit any solution in the (c3, d5)-
plane. Notice that as g∗ gets bigger the constraints
from FV V or FV V ′ alone single out essentially a nar-
row band around the line c3 = 1/4, in agreement with
the causality arguments of Ref.s [56, 57]. Similarly, the
constraint from FSS alone, converge quickly on the line
1 − 4c3(1 − 9c3) + 64d5 = 0. The intersection point
(c3, d5) = (1/4,−9/256) (red point in Fig. 3) is finally
removed by FV S .

In substance, the intersection region in the left panel
of Fig. 3 is empty, while a small island (delimited by a
solid black line) survives in the right plot with smaller
g∗. To find the maximum value of g∗ that allows for a
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FIG. 3. Exclusion plot in the (c3, d5) plane for ghost-free massive gravity, for fixed accuracy δ = 1%, mass m = 10−30 eV, and
coupling g∗ = 1(2) · 10−9 in the right (left) panel. Yellow region: allowed by standard positivity constraints, Eqs.(27, 28, 29,
30, 32), whose optimized versionfrom Ref. [13] is dotted. Other colored regions are allowed by our new bounds. Dash-dotted
red line (dashed black line): regions of vanishing FV V (FSS), where the respective bounds vanish: indeed in the red dot
(c3, d5) = (1/4,−9/256) the vector and scalar mode decouple from the tensors, but not from each other, and in the black dot
the scalar mode decouples from the tensor mode and itself.

solution, we write Eq. (34) as

m > 1.2 · 1012eV
(g∗

1

)4
(
δ

1%

)6
1

Fi(c3, d5)
, (37)

and note that FV S is continuous on the compact region
allowed by the positivity constraints (27, 28, 29, 30, 32).

The FV S has thus a maximum value FV S(ĉ3, d̂5) = 1.95 ·
107 at (ĉ3, d̂5) ' (0.19, 0.15) inside that region (in fact,
at the boundary), which implies the lower bound

m > 10−30 eV
( g∗

2 · 10−9

)4
(
δ

1%

)6

, (38)

independently of any values of c3 and d5. We recall that
the direct experimental constraints on the graviton mass
are m & 10−30eV. This situation is summarized in Fig. 1
and implies that g∗ & 10−9 is excluded. Even slightly
stronger bounds can be obtained by working with the
non-elastic channels. In fact, as we now discuss, g∗ can
not be taken to such small values anyway.

The crucial question now is: what is the physical mean-
ing of g∗, the relation between the cutoff Λ and the scale
Λ3? Can the UV completion be arbitrarily weakly cou-
pled g∗ . 10−9[15]? To our knowledge, most literature
of massive gravity has so far identified the cutoff Λ with
the scale Λ3, so that one expects a sizable g∗ ≈ 0.1− 4π.
These values are now grossly excluded by our bounds.

What about hierarchical values for Λ and Λ3 corre-
sponding to tiny values for g∗? From a theoretical point
of view Λ and Λ3 scale differently with ~ 6= 1, so that
their ratio actually changes when units are changed, in

such a way that indeed g∗ scales like a coupling constant
(see Appendix A). This is fully analogous to the differ-
ence between a vacuum expectation value v (VEV) and
the masses of new particles ∼ coupling × v, e.g. the
W -boson mass mW ∼ gv. The crucial point is that the
cutoff, which is a physical scale Λ differs from Λ3, which
does not have the right dimension to represent a cutoff.

Since Λ−1
3 = 15 km

(
m/10−30eV

)−2/3
, a very small cou-

pling g∗ translates into a very low cutoff (large in distance
units)

Λ ' (15000 km)
−1
( g∗

10−9

)1/3 ( m

10−30eV

)2/3

. (39)

This is grossly inconsistent with the precise tests of gen-
eral relativity, which go down to the mm scale or even
below, see e.g. [50, 51] and references in [45]. The ten-
sion between our bounds, direct limits on the graviton
mass, and from fifth force experiments is not resolvable
(see Fig. 1), and this excludes massive gravity.

One might naively think that some screening effect,
e.g. the Vainshtein mechanism [52, 53], could resolve
this tension: after all the cutoff in Eq. (39) holds in
Minkowski space and non-necessarily in regions near mas-
sive bodies, such as the earth, where non-linearities are
important. However, the Vainshtein mechanism relies,
crucially, on the assumption that the tower of effective
operators is such that only building blocks of the type
∂∂π/Λ3

3 are unsuppressed (we work here for simplicity
with the Stueckelberg mode π in the decoupling limit),
whereas terms with more than two derivatives per field,
like (∂/Λ)n∂∂π/Λ3

3, are small. This assumption is con-
sistent with NDA for Λ� Λ3 i.e. for g∗ � 1, but this is
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exactly the region ruled out by our bounds, as discussed
above.

On the other hand, assuming that the Vainshtein
mechanism works along with Λ � Λ3, translates into
extra highly non-generic assumptions about the UV-
completion, see [46]. More importantly, the very same
assumption that allows one to trust the Vainshtein mech-
anism, that is trusting the prediction at distances much
smaller than Λ−1

3 , and a fortiori smaller than Λ−1, would
at the same time allows one to choose E in (26) to much
larger values than Λ as well. In practice, the assumption
that would justify the call for a Vainshtein mechanism
would allow us to set, effectively, g∗ ∼ 1 again.

In summary, either g∗ � 1 or Vainshtein can be taken,
but not both. This is after all obvious: Vainshtein re-
quires effectively a larger calculability cutoff, Λ→ Λ3, so
our bounds become more effective too.

All in all, our theoretical bounds (37, 38) rule out
ghost-free massive gravity for good, unless some new
clever mechanism beyond Vainshtein’s would allow to
lower even further the cutoff. In turn, ghost-free massive
gravity is no longer a candidate for explaining the cosmic
acceleration since that requires m ∼ H0 ∼ 10−33 eV.

VI. OUTLOOK

Positivity bounds are statements that arise from
first principles such unitarity, analyticity, and cross-
ing symmetry of the Lorentz invariant S-matrix. They
have proven to be very useful because they set non-
perturbative theoretical constraints even in strongly cou-
pled theories, and give information that goes well beyond
the mere use of symmetries. In this paper we went be-
yond positivity bounds and derived rigorous inequalities
for amplitudes that are calculable in the IR via an EFT
approach. The dispersive integral in the IR is not only
positive but calculable, with an error from truncating
the EFT towers of higher-dimensional operators that can
be tamed thanks to separation of scales, which is what
makes the EFT useful in the first place.

Our results are simple and general, and they can be
applied straightforwardly to several EFTs. The phe-
nomenological applications to interesting theories such
as the weakly-broken Galileon and the ghost-free massive
gravity that we explored in this paper are extremely re-
warding. Our results, taken at face value, rule out dRGT
massive gravity by combining our bound with the experi-
mental lower bound on the graviton mass, and fifth force
experiments, see Fig. 1. In the region where the Vain-
shtein mechanism could be at play, our bounds in fact
require m & 100 keV. Needless to say, our bounds nei-
ther apply to Lorentz-violating models of massive grav-
ity (e.g. [59]), nor to theories with a massless graviton.

There are several directions where our bounds can
find fruitful applications. The most immediate ideas in-
volve theories with Goldstone particles, e.g., the EFT for
the Golstino from SUSY breaking, the R-axion from R-

symmety breaking, and the dilaton from scale-symmetry
breaking. In these theories there exist universal cou-
plings that are set by the various decay constants, but
include also other non-universal parameters whose sizes
and signs are often not accessible with the standard pos-
itivity bounds. Our results would allow instead to re-
late the non-universal parameters to the decay constants
and extract thus non-trivial information on these EFTs,
which are also phenomenologically interesting, see e.g.
[26–28, 54, 55]. Another direction would be theories that
have suppressed 2-to-2 amplitudes but unsuppressed 2-
to-3 amplitudes, as those discussed e.g. in [38].

One important open question, that for the time being
remains elusive, is whether it is possible (at least under
extra assumptions) to extend our results to theories with
massless particles and with spin J ≥ 2. If that would be
the case, the bounds would provide new insights on the
long-distance universal properties of the UV-completion
of quantum gravity. The bounds would also apply to IR
modifications of General Relativity such as Horndeski-
like theories, where the graviton remains massless.
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Appendix A: g∗-counting via ~-counting

In this appendix we recall how dimensional analysis
is useful to extract the scaling with respect to coupling
constants.

Rescaling the units from ~ = 1 to ~ 6= 1 while keeping
c = 1 reintroduces a conversion factor between energy (or
momentum) units E and length (or time) units `, i.e. ` =
~/E . With canonically normalized kinetic terms, we have
the following scaling with ~: [A] = E [~]−1/2, [∂] = E [~]−1,
[m] = E , and [g∗] = [~]−1/2, where g∗ is (a collective name
for) coupling constant(s) and m a physical mass. Notice
that Higgs quartic coupling λ is really a coupling squared
[λ] = [g2

∗]. Quantum corrections scale indeed like powers
of the dimensionless quantity g2

∗~/(16π2) or λ~/(16π2),
so that they are important for g2

∗ ∼ 16π2/~ ∼ λ when
there is no large dimensionless number (such as e.g. the
number of species). Extending this dimensional analysis
to fermions is immediate to see that Yukawa couplings
scale like ~−1/2 too.
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More importantly, the relation between VEVs, cou-
plings, physical masses and the associated Compton
lengths is

[λ−1] =
[m
~

]
= [g∗〈A〉] . (A1)

A coupling times a VEV is nothing but an inverse phys-
ical length which can be converted to a physical mass
by plugging in the conversion factor, aka ~. In other
words, the appearance of the coupling in (A1) tells us
that parametrically VEV’s are to masses (or Compton
lengths) like apples are to oranges. 5 The immediate
consequence of this trivial excercise is that the reduced
Planck mass mPl has units of a VEV, [mPl] = [A], and
not of a physical mass scale, in full analogy with the ax-
ion decay constant [fa] = [A]. The UV-completion of
general relativity should enter at some physical energy
g∗mPl~ which is parametrically different than mPl, even
after setting ~ = 1, because of the coupling g∗.

But what is left behind is the correct counting of g∗-
insertions. This reasoning with ~ 6= 1 is useful to keep
track of the appropriate g∗ insertions; the structure of a
generic Lagrangian that automatically reproduces it is,

L =
Λ4

g2
∗
L̂
(
∂

Λ
,
g∗A

Λ
,
g∗ψ

Λ3/2

)
(A2)

where Λ is a physical mass scale and L̂ is a polynomial
with dimensionless coefficient, and we have finally set
back ~ = 1.The Lagrangian (A2) accounts for the intu-
itive fact that any field insertion in a given non-trivial
process requires including a coupling constant as well.
A class of simple theories with only one coupling and

one scale [43] are those where all coefficients of L̂ are of
the same order (except for symmetries that can naturally
suppress a subset of the parameters). They represent a
generalization of the naive counting of 4π-factors, rou-
tinely used in strongly coupled EFT’s in particle physics
(see e.g. [44]), which goes under the name of naive di-
mensional analysis (NDA).

With the g∗-counting at hand, we immediately recog-
nize that the scale Λ3

3 = (m2mPl) traditionally used in
massive gravity is not parametrically a physical thresh-
old: it misses a coupling constant. This is made manifest
by the fact that the graviton mass is a physical mass scale
but mPl is only a VEV. Alternatively, in the decoupling
limit the coefficient of the cubic Galileon must carry a
coupling g∗, that is [c3] = [g∗] to match the general scal-
ing (A2). The actual correct parametric scaling is thus
Λ3 = g∗Λ

3
3. A weakly coupled theory corresponds to

suppressed Λ relative to Λ3, like a weakly coupled UV
completion of general relativity corresponds to states en-
tering much earlier than 4πmPl.

5 We thank Riccardo Rattazzi who inspired this adage, with his
interventions at the J. Hopkins workshop in Budapest in 2017.

Appendix B: Polarizations

We adopt the following basis of linear polarizations

(
εT (k1)

)µν
=

1√
2

 0 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 0


µν

, (B1)

(
εT

′
(k1)

)µν
=

1√
2

 0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0


µν

, (B2)

(
εV (k1)

)µν
=

1√
2m

 0 kz1 0 0
kz1 0 0 E
0 0 0 0
0 E 0 0


µν

, (B3)

(
εV

′
(k1)

)µν
=

1√
2m

 0 0 kz1 0
0 0 0 0
kz1 0 0 E
0 0 E 0


µν

, (B4)

(
εS(k1)

)µν
=

√
2

3


kz 2

1

m2
0 0

kz1E

m2

0 −1/2 0 0
0 0 −1/2 0

kz1E

m2
0 0

E2

m2


µν

(B5)

which are associated to the particle kµ1 = (E,k1) =
(E1, 0, 0, k

z
1) which lies along the z-axis and has E2 =

k2
1 + m2. They are real, symmetric, traceless, orthogo-

nal, transverse to k1, and normalized to ε∗µνε
νµ = 1 6.

The polarizations associated to the other momenta kµi
in the 2-to-2 scattering in the center of mass frame are
obtained by a Lorentz transformation of those in (B1),
e.g. (

εV (k3)
)µν

= Rµµ′R
ν
ν′

(
εV (k1)

)µ′ν′

(B6)

with Rµµ′ the rotation along the y-axis by cos θ =

1 + 2t/(s − 4m2) such that k3 = Rk1. While this
definition is valid and legitimate, it corresponds effec-
tively to consider k1 as the canonical reference vector,
rather than (m, 0, 0, 0)T , upon which constructing the
massive one-particle states via boosting. Alternatively,
it means that the standard Lorentz transformation that
sends (m, 0, 0, 0)T to k is a boost along the z-axis followed

by rotation that sends ẑ to k̂ (like done e.g. for mass-
less particle in [58]), rather than the sequence rotation-
boost-rotation usually adopted for massive states [58].

6 We are taking the same matrix entries of [13], except that that
we have removed the i factor from the vector polarizations and
taken all upper Lorentz indexes. We checked that our choice
satisfy the completeness relation. The i factor is never important
in elastic amplitudes, but it should actually be included whenever
considering mixed-helicity states that include vector components,
as done in [13]
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The advantage of our convention is that it removes the
little group matrix that would otherwise act on the polar-
ization indexes z = T, T ′, V, V ′, S when performing the

rotations that send k1 to ki. (The Wigner rotation must
be adapted accordingly too). For massless particles the
differences between the two conventions is essentially im-
material as the little group acts just like phases.
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man, “Causality Constraints on Massive Gravity,”
arXiv:1610.02033 [hep-th].

[57] K. Hinterbichler, A. Joyce and R. A. Rosen, “Mas-
sive Spin-2 Scattering and Asymptotic Superluminality,”
arXiv:1708.05716 [hep-th].

[58] S. Weinberg, “The Quantum Theory of Fields. Vol. 1:
Foundations,”

[59] D. Blas and S. Sibiryakov, Zh. Eksp. Teor. Fiz. 147
(2015) 578 [J. Exp. Theor. Phys. 120 (2015) no.3, 509]
[arXiv:1410.2408 [hep-th]].


	Beyond Amplitudes' Positivity and the Fate of Massive Gravity
	Abstract
	I Introduction and summary
	II Dispersion Relations
	III Positivity and Beyond
	IV Galileon
	V Massive Gravity
	 Implications

	VI Outlook
	 Acknowledgements

	A g*-counting via -counting
	B Polarizations
	 References


