A. Bretagnolle, E. Daudé, and D. Pumain, La complexit?? dans les syst??mes urbains : de la th??orie au mod??le, Cybergeo, vol.335, 2006.
DOI : 10.1063/1.4823369

L. Bettencourt and G. West, A unified theory of urban living, Nature, vol.413, issue.7318, pp.912-915, 2010.
DOI : 10.1038/467912a

W. Pan, G. Ghoshal, C. Krumme, M. Cebrian, and A. Pentland, Urban characteristics attributable to density-driven tie formation, Nature Communications, vol.21, pp.1-7, 2013.
DOI : 10.1073/pnas.0900282106

URL : http://www.nature.com/articles/ncomms2961.pdf

M. Batty, Building a science of cities, Cities, vol.29, pp.9-16, 2012.
DOI : 10.1016/j.cities.2011.11.008

URL : http://www.bartlett.ucl.ac.uk/casa/pdf/paper170.pdf

M. Barthelemy, The Structure and Dynamics of Cities, 2016.
DOI : 10.1017/9781316271377

M. Barthelemy, Spatial networks, Physics Reports, vol.499, issue.1-3, pp.1-101, 2011.
DOI : 10.1016/j.physrep.2010.11.002

URL : https://hal.archives-ouvertes.fr/hal-00014378

S. Goh, M. Y. Choi, K. Lee, and K. Kim, How complexity emerges in urban systems: Theory of urban morphology, Physical Review E, vol.93, issue.5, p.52309, 2016.
DOI : 10.1080/00420988520080711

L. Bettencourt, The Origins of Scaling in Cities, Science, vol.2010, issue.6, pp.1438-1441, 2013.
DOI : 10.1111/1468-0289.00084

V. Kalapala, V. Sanwalani, A. Clauset, and C. Moore, Scale invariance in road networks, Physical Review E, vol.284, issue.2, p.73, 2006.
DOI : 10.1126/science.284.5420.1667

URL : http://arxiv.org/pdf/physics/0510198

H. Youn, M. T. Gastner, and H. Jeong, Price of Anarchy in Transportation Networks: Efficiency and Optimality Control, Physical Review Letters, vol.17, issue.12, p.128701, 2008.
DOI : 10.1016/0191-2607(81)90005-4

A. Cardillo, S. Scellato, V. Latora, and S. Porta, Structural properties of planar graphs of urban street patterns, Physical Review E, vol.2, issue.6, pp.66107-66115, 2006.
DOI : 10.1103/PhysRevE.71.036122

A. Justen, F. J. Martínez, and C. Cortés, The use of space???time constraints for the selection of discretionary activity locations, Journal of Transport Geography, vol.33, pp.146-152, 2013.
DOI : 10.1016/j.jtrangeo.2013.10.009

F. Witlox, Evaluating the reliability of reported distance data in urban travel behaviour analysis, Journal of Transport Geography, vol.15, issue.3, pp.172-183, 2007.
DOI : 10.1016/j.jtrangeo.2006.02.012

F. Da, L. Costa, B. A. Travençolo, M. P. Viana, and E. Strano, On the efficiency of transportation systems in large cities, EPLEurophysics Letters), vol.91, p.18003, 2010.

P. Wang, T. Hunter, A. M. Bayen, K. Schechtner, and M. C. González, Understanding Road Usage Patterns in Urban Areas, Scientific Reports, vol.1, issue.1, p.1001, 2012.
DOI : 10.1103/PhysRevLett.96.138701

URL : http://www.nature.com/articles/srep01001.pdf

C. Kang, X. Ma, D. Tong, and Y. Liu, Intra-urban human mobility patterns: An urban
DOI : 10.1016/j.physa.2011.11.005

P. Haggett and R. J. Chorley, Network analysis in geography, 1969.

S. Lammer, B. Gehlsen, and D. Helbing, Scaling laws in the spatial structure of urban road networks, Physica A: Statistical Mechanics and its Applications, vol.363, issue.1, p.853866, 2006.
DOI : 10.1016/j.physa.2006.01.051

F. Wang, A. Antipova, and S. Porta, Street centrality and land use intensity in Baton Rouge, Louisiana, Journal of Transport Geography, vol.19, issue.2, pp.285-293, 2011.
DOI : 10.1016/j.jtrangeo.2010.01.004

Y. Rui, Y. Ban, J. Wang, and J. Haas, Exploring the patterns and evolution of self-organized urban street networks through modeling, The European Physical Journal B, vol.369, issue.3, pp.74-82, 2013.
DOI : 10.1016/j.physa.2005.12.063

R. Louf and M. Barthlemy, A typology of street patterns, Journal of The Royal Society Interface, vol.23, issue.6, pp.20140924-20140924, 2014.
DOI : 10.1007/s10980-008-9268-x

URL : http://rsif.royalsocietypublishing.org/content/royinterface/11/101/20140924.full.pdf

E. Strano, Urban Street Networks, a Comparative Analysis of Ten European Cities, Environment and Planning B: Planning and Design, vol.11, issue.19, pp.1071-1086, 2013.
DOI : 10.1017/CBO9780511815478

A. P. Masucci, D. Smith, A. Crooks, and M. Batty, Random planar graphs and the London street network, The European Physical Journal B, vol.6, issue.2, pp.259-271, 2009.
DOI : 10.7208/chicago/9780226076973.001.0001

URL : http://arxiv.org/pdf/0903.5440

J. Clark and D. A. Holton, A first look at graph theory, World Scientific, vol.1, 1991.
DOI : 10.1142/1280

D. Aldous and K. Ganesan, True scale-invariant random spatial networks, Proceedings of the National Academy of Sciences, vol.316, issue.5824, pp.8782-8785, 2013.
DOI : 10.1126/science.1137521

URL : http://www.pnas.org/content/110/22/8782.full.pdf

D. Aldous, Routed planar networks, Electronic Journal of Graph Theory and Applications, vol.4, issue.1, pp.42-59, 2016.
DOI : 10.5614/ejgta.2016.4.1.5

URL : http://ejgta.org/index.php/ejgta/article/download/127/pdf_15

G. Ghoshal and A. Barabási, Ranking stability and super-stable nodes in complex networks, Nature Communications, vol.5, p.394, 2011.
DOI : 10.1103/PhysRevE.64.041902

URL : http://www.nature.com/articles/ncomms1396.pdf

M. Barthelemy, Crossover from scale-free to spatial networks, Europhysics Letters (EPL), vol.63, issue.6, p.915, 2003.
DOI : 10.1209/epl/i2003-00600-6

URL : https://hal.archives-ouvertes.fr/hal-00014377

L. C. Freeman, A Set of Measures of Centrality Based on Betweenness, Sociometry, vol.40, issue.1, p.41, 1977.
DOI : 10.2307/3033543

P. Holme, CONGESTION AND CENTRALITY IN TRAFFIC FLOW ON COMPLEX NETWORKS, Advances in Complex Systems, vol.51, issue.02, pp.163-176, 2003.
DOI : 10.1103/PhysRevE.65.066130

D. J. Ashton, T. C. Jarrett, and N. Johnson, Effect of Congestion Costs on Shortest Paths Through Complex Networks, Physical Review Letters, vol.94, issue.5, pp.58701-58705, 2005.
DOI : 10.1209/epl/i2000-00227-1

T. C. Jarrett, D. J. Ashton, M. Fricker, and N. F. Johnson, Interplay between function and structure in complex networks, Physical Review E, vol.2006, issue.2, pp.26116-26124, 2006.
DOI : 10.1098/rspb.2004.2856

URL : http://arxiv.org/pdf/physics/0604183

U. Brandes, A faster algorithm for betweenness centrality*, The Journal of Mathematical Sociology, vol.113, issue.2, pp.163-177, 2001.
DOI : 10.1017/CBO9780511815478

URL : http://www.inf.uni-konstanz.de/algo/publications/b-fabc-01.pdf

M. Roswall, A. Trusina, P. Minnhagen, and K. Sneppen, Networks and Cities: An Information Perspective, Physical Review Letters, vol.45, issue.2, p.28701, 2005.
DOI : 10.1073/pnas.97.7.3491

B. Jiang, A topological pattern of urban street networks: Universality and peculiarity, Physica A: Statistical Mechanics and its Applications, vol.384, issue.2, pp.647-655, 2007.
DOI : 10.1016/j.physa.2007.05.064

S. H. Chan, R. V. Donner, and S. Lämmer, Urban road networks ? spatial networks with universal geometric features? The European Physical, Journal B, vol.84, pp.563-577, 2011.
DOI : 10.1140/epjb/e2011-10889-3

URL : http://arxiv.org/pdf/1102.3584

B. Lion and M. Barthelemy, Central loops in random planar graphs, Physical Review E, vol.3, issue.4, p.42310, 2017.
DOI : 10.1209/0295-5075/100/28002

URL : https://hal.archives-ouvertes.fr/cea-01502150

P. Crucitti, V. Latora, and S. Porta, Centrality measures in spatial networks of urban streets, Physical Review E, vol.33, issue.3, pp.36125-36130, 2006.
DOI : 10.2307/1939238

S. Porta, P. Crucitti, and V. Latora, The network analysis of urban streets: a primal approach. Environment and Planning B: planning and design 33, pp.705-725, 2006.

M. Barthelemy, P. Bordin, H. Berestycki, and M. Gribaudi, Self-organization versus top-down planning in the evolution of a city, Scientific Reports, vol.40, issue.1, p.2153, 2013.
DOI : 10.2307/3033543

M. Barthelemy, Betweenness centrality in large complex networks, The European Physical Journal B - Condensed Matter, vol.38, issue.2, pp.163-168, 2004.
DOI : 10.1140/epjb/e2004-00111-4

URL : https://hal.archives-ouvertes.fr/hal-00014380

E. Strano, The scaling structure of the global road network. arXiv preprint, 2017.

S. Gago, J. Hurajová, and T. Madaras, Abstract, Mathematica Slovaca, vol.28, issue.1, pp.1-12, 2012.
DOI : 10.1080/00222500490516671

O. Narayan and I. Saniee, Large-scale curvature of networks, Physical Review E, vol.6, issue.6, p.66108, 2011.
DOI : 10.1145/141800.141805

URL : http://arxiv.org/pdf/0907.1478

E. Jonckheere, M. Lou, F. Bonahon, and Y. Baryshnikov, Euclidean versus Hyperbolic Congestion in Idealized versus Experimental Networks, Internet Mathematics, vol.7, issue.1, pp.1-27, 2011.
DOI : 10.1080/15427951.2010.554320

URL : http://arxiv.org/abs/0911.2538

M. Lee, H. Barbosa, H. Youn, G. Ghoshal, and P. Holme, Urban socioeconomic patterns revealed through morphology of travel routes, 2017.

C. Clark, Urban Population Densities, Journal of the Royal Statistical Society. Series A (General), vol.114, issue.4, pp.490-496, 1951.
DOI : 10.2307/2981088

H. Wang, J. M. Hernandez, and P. Van-mieghem, Betweenness centrality in a weighted network, Physical Review E, vol.77, issue.4, p.46105, 2008.
DOI : 10.1017/S0963548306007802

A. Clauset, C. R. Shalizi, and M. E. Newman, Power-Law Distributions in Empirical Data, SIAM Review, vol.51, issue.4, pp.661-703, 2009.
DOI : 10.1137/070710111

URL : http://arxiv.org/pdf/0706.1062

D. Lee and B. J. Schachter, Two algorithms for constructing a Delaunay triangulation, International Journal of Computer & Information Sciences, vol.134, issue.3, pp.219-242, 1980.
DOI : 10.1515/crll.1908.134.198

M. E. Newman, D. J. Watts, and S. Strogatz, Random graphs with arbitrary degree distributions and their applications, Physical Review E, vol.44, issue.2, p.26118, 2001.
DOI : 10.2307/2666995

URL : http://arxiv.org/abs/cond-mat/0007235

R. L. Graham and P. Hell, On the History of the Minimum Spanning Tree Problem, IEEE Annals of the History of Computing, vol.7, issue.1, pp.43-57, 1985.
DOI : 10.1109/MAHC.1985.10011

G. Szabó, M. Alava, and J. Kertész, Shortest paths and load scaling in scale-free trees, Physical Review E, vol.75, issue.2, p.26101, 2002.
DOI : 10.1103/PhysRevLett.75.4071

Z. Wu, L. A. Braunstein, S. Havlin, and H. Stanley, Transport in weighted networks: partition into superhighways and roads. Physical review letters 96, p.148702, 2006.
DOI : 10.1103/physrevlett.96.148702

A. P. Giles, O. Georgiou, and C. P. Dettmann, Betweenness centrality in dense random geometric networks, 2015 IEEE International Conference on Communications (ICC), pp.6450-6455, 2015.
DOI : 10.1109/ICC.2015.7249352

URL : http://arxiv.org/abs/1410.8521

D. Jordan, Transforming Paris: The Life and Labors of Baron Haussmann, 1995.

Y. Mileyko, H. Edelsbrunner, C. A. Price, and J. S. Weitz, Hierarchical Ordering of Reticular Networks, PLoS ONE, vol.74, issue.524, p.36715, 2012.
DOI : 10.1371/journal.pone.0036715.g006

URL : https://doi.org/10.1371/journal.pone.0036715

O. Contributors and . Openstreetmap, URL http://planet.openstreetmap. org. [Online, 2015.

A. Guttman, R-trees: a dynamic index structure for spatial searching, p.84

S. Kumar, R. Balakrishnan, K. Jathavedan, and M. , Betweenness centrality in some classes of graphs, International Journal of Combinatorics, p.2014, 2014.

A. Kirkley, H. Barbosa, and M. Barthelemy, Gourab Ghoshal Table of Contents S1 Data, p.31

S. Hull and .. , 35 S2 Distribution of g B for 1sq mile samples and fits to the tail 36 S3 Tails of the BC distributions with their corresponding truncated-power-law fits. . . . 37 S4 Distribution of truncated-power-law parameters 42 S5 The BC distribution of various random graph models 43 S6 2-Sample KS Statistics for City Random Graph Models 45 S7 2-sample KS Test p-values for City Random Graph Models, List of Figures S1 Betweenness 50 S12 Degree Distributions for Individual Cities . . . . . . . . . . . . . . . . . . . . . . . . 51 S13 Evolution of the number of roads in central, p.52