C. Colbeau-justin, M. Kunst, and D. Huguenin, Structural influence on charge-carrier lifetimes in TiO 2 powders studied by microwave absorption, Journal of Materials Science, vol.38, issue.11, pp.2429-2437, 2003.
DOI : 10.1023/A:1023905102094

T. Alaoui, O. Herissan, A. , L. Quoc, and C. , Elaboration, charge-carrier lifetimes and activity of Pd-TiO2 photocatalysts obtained by gamma radiolysis, Journal of Photochemistry and Photobiology A: Chemistry, vol.242, pp.34-43, 2012.
DOI : 10.1016/j.jphotochem.2012.05.030

S. Fonash, Solar cell device physics, 1981.

R. Asahi, T. Morikawa, and T. Ohwaki, Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides, Science, vol.293, issue.5528, pp.269-271, 2001.
DOI : 10.1126/science.1061051

G. Yang, Z. Jiang, and H. Shi, Preparation of highly visible-light active N-doped TiO2 photocatalyst, Journal of Materials Chemistry, vol.8, issue.25, pp.5301-5309, 2010.
DOI : 10.1039/c0jm00376j

L. Duta, C. Popescu, and A. Popescu, Nitrogen-doped and gold-loaded TiO2 photocatalysts synthesized by sequential reactive pulsed laser deposition, Applied Physics A, vol.94, issue.454, pp.97-101, 2014.
DOI : 10.1111/j.1551-2916.2011.04693.x

A. Gazsi, G. Schubert, and P. Pusztai, Photocatalytic decomposition of formic acid and methyl formate on TiO2 doped with N and promoted with Au. Production of H2, International Journal of Hydrogen Energy, vol.38, issue.19, pp.7756-7766, 2013.
DOI : 10.1016/j.ijhydene.2013.04.097

R. Amadelli, L. Samiolo, and M. Borsa, N-TiO2 Photocatalysts highly active under visible irradiation for NOX abatement and 2-propanol oxidation, Catalysis Today, vol.206, issue.2, pp.19-25, 2013.
DOI : 10.1016/j.cattod.2011.11.031

J. Wang, D. Tafen, and J. Lewis, Nanobelts, Journal of the American Chemical Society, vol.131, issue.34, pp.12290-12297, 2009.
DOI : 10.1021/ja903781h

R. Asahi and T. Morikawa, Nitrogen complex species and its chemical nature in TiO 2 for visible-light sensitized photocatalysis, Chem Phys, vol.339, pp.1-357, 2007.

M. Okumura, J. Coronado, and J. Soria, EPR Study of CO and O2 Interaction with Supported Au Catalysts, Journal of Catalysis, vol.203, issue.1, pp.168-174, 2001.
DOI : 10.1006/jcat.2001.3307

C. Kumar, N. Gopal, and T. Wang, Nanoparticles with Temperature-Dependent Properties, The Journal of Physical Chemistry B, vol.110, issue.11, pp.5223-5229, 2006.
DOI : 10.1021/jp057053t

Y. Li, D. Hwang, and N. Lee, Synthesis and characterization of carbon-doped titania as an artificial solar light sensitive photocatalyst, Chemical Physics Letters, vol.404, issue.1-3, pp.1-325, 2005.
DOI : 10.1016/j.cplett.2005.01.062

S. Livraghi, M. Paganini, and M. Chiesa, Trapped molecular species in N-doped TiO2, Research on Chemical Intermediates, vol.94, issue.8, pp.739-747, 2007.
DOI : 10.1021/jp051756t

S. Livraghi, M. Chierotti, and E. Giamello, Nitrogen-Doped Titanium Dioxide Active in Photocatalytic Reactions with Visible Light: A Multi-Technique Characterization of Differently Prepared Materials, The Journal of Physical Chemistry C, vol.112, issue.44, pp.17244-17252, 2008.
DOI : 10.1021/jp803806s

D. Valentin, C. Pacchioni, G. Selloni, and A. , Powders by EPR Spectroscopy and DFT Calculations, The Journal of Physical Chemistry B, vol.109, issue.23, pp.11414-11419, 2005.
DOI : 10.1021/jp051756t

G. Barolo, S. Livraghi, and M. Chiesa, Investigated by Electron Paramagnetic Resonance., The Journal of Physical Chemistry C, vol.116, issue.39, pp.20887-20894, 2012.
DOI : 10.1021/jp306123d

E. Konstantinova, A. Kokorin, and K. Lips, EPR study of the illumination effect on properties of paramagnetic centers in nitrogen-doped TiO 2 active in visible light photocatalysis designs, developments, and prospects, Appl Magn Reson. Chem Rev, vol.35114114, issue.3, pp.421-4279824, 2009.

D. Chatterjee and S. Dasgupta, Visible light induced photocatalytic degradation of organic pollutants, Journal of Photochemistry and Photobiology C: Photochemistry Reviews, vol.6, issue.2-3, pp.186-205, 2005.
DOI : 10.1016/j.jphotochemrev.2005.09.001

R. Daghrir, P. Drogui, and D. Robert, For Environmental Photocatalytic Applications: A Review, Industrial & Engineering Chemistry Research, vol.52, issue.10, pp.3581-3599, 2013.
DOI : 10.1021/ie303468t

Q. Kang, B. Yuan, and J. Xu, Synthesis, Characterization and Photocatalytic Performance of TiO2 Codoped with Bismuth and Nitrogen, Catalysis Letters, vol.9, issue.9, pp.1371-1377, 2011.
DOI : 10.1016/j.catcom.2007.12.014

H. Liu, X. Dong, and G. Li, Synthesis of C, Ag co-modified TiO2 photocatalyst and its application in waste water purification, Applied Surface Science, vol.271, pp.276-283, 2013.
DOI : 10.1016/j.apsusc.2013.01.181

G. Devi, L. Kavitha, and R. , for green energy applications under UV/visible light: selected results and reaction mechanisms, RSC Adv., vol.203, issue.414, pp.28265-28299, 2014.
DOI : 10.1006/jcat.2001.3316

J. Mahy, S. Lambert, and G. Léonard, Towards a large scale aqueous sol-gel synthesis of doped TiO2: Study of various metallic dopings for the photocatalytic degradation of p-nitrophenol, Journal of Photochemistry and Photobiology A: Chemistry, vol.329, pp.189-202, 2016.
DOI : 10.1016/j.jphotochem.2016.06.029

L. Gnanasekaran, R. Hemamalini, and R. Saravanan, Intermediate state created by dopant ions (Mn, Co and Zr) into TiO 2 nanoparticles for degradation of dyes under visible light, Journal of Molecular Liquids, vol.223, pp.652-659, 2016.
DOI : 10.1016/j.molliq.2016.08.105

S. Jafari, M. Mohammadi, M. Hosseini, and H. , as Environmental Catalysts, Industrial & Engineering Chemistry Research, vol.55, issue.47, pp.12205-12212, 2016.
DOI : 10.1021/acs.iecr.6b03053

A. Zaleska, Doped-TiO2: A Review, Recent Patents on Engineering, vol.2, issue.3, pp.157-164, 2008.
DOI : 10.2174/187221208786306289

E. Grabowska, M. Marchelek, and T. Klimczuk, Noble metal modified TiO 2 microspheres: Surface properties and photocatalytic activity under UV???vis and visible light, Journal of Molecular Catalysis A: Chemical, vol.423, pp.191-206, 2016.
DOI : 10.1016/j.molcata.2016.06.021

M. Méndez-medrano, E. Kowalska, and A. Lehoux, with Au Nanoclusters for Efficient Water Treatment and Hydrogen Generation under Visible Light, The Journal of Physical Chemistry C, vol.120, issue.43, pp.25010-25022, 2016.
DOI : 10.1021/acs.jpcc.6b06854

S. Bouhadoun, C. Guillard, and F. Dapozze, One step synthesis of N-doped and Au-loaded TiO 2 nanoparticles by laser pyrolysis: application in photocatalysis, Appl Catal B Environ, pp.174-175367, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01140868

S. Livraghi, M. Paganini, and E. Giamello, Origin of Photoactivity of Nitrogen-Doped Titanium Dioxide under Visible Light, Journal of the American Chemical Society, vol.128, issue.49, pp.15666-15671, 2006.
DOI : 10.1021/ja064164c

S. Livraghi, A. Votta, and M. Paganini, The nature of paramagnetic species in nitrogen doped TiO 2 active in visible light photocatalysis, Chem Commun, vol.4, pp.498-500, 2005.

D. Valentin, C. Finazzi, E. Pacchioni, and G. , N-doped TiO 2 : theory and experiment, Chem Phys, vol.339, pp.1-344, 2007.

Z. Hai, E. Kolli, N. Uribe, and D. , Modification of TiO2 by bimetallic Au???Cu nanoparticles for wastewater treatment, Journal of Materials Chemistry A, vol.27, issue.36, p.10829, 2013.
DOI : 10.1016/j.msec.2006.09.028

URL : https://hal.archives-ouvertes.fr/hal-01121563

M. Hoffmann, S. Martin, and W. Choi, Environmental Applications of Semiconductor Photocatalysis, Chemical Reviews, vol.95, issue.1, pp.69-96, 1995.
DOI : 10.1021/cr00033a004

G. Buxton, C. Greenstock, and W. Helman, Criticalreview of rate constants for reactions of hydrated electrons, hydrogen-atoms and hydroxyl radicals (.OH/.O-) in aqueous-solution, J Phys Chem, vol.17, pp.513-886, 1988.

M. Kaise, H. Nagai, and K. Tokuhashi, Electron Spin Resonance Studies of Photocatalytic Interface Reactions of Suspended M/TiO2 (M = Pt, Pd, Ir, Rh, Os, or Ru) with Alcohol and Acetic Acid in Aqueous Media, Langmuir, vol.10, issue.5, pp.1345-1347, 1994.
DOI : 10.1021/la00017a005

Y. Nosaka, K. Koenuma, and K. Ushida, Electron Spin Resonance Measurements, Langmuir, vol.12, issue.3, pp.736-738, 1996.
DOI : 10.1021/la9509615

V. Gandhi, M. Mishra, and P. Joshi, Titanium Dioxide Catalyzed Photocatalytic Degradation of Carboxylic Acids from Waste Water: A Review, Materials Science Forum, vol.712, pp.175-189, 2012.
DOI : 10.4028/www.scientific.net/MSF.712.175

I. Shkrob and S. Chemerisov, Light Induced Fragmentation of Polyfunctional Carboxylated Compounds on Hydrated Metal Oxide Particles: From Simple Organic Acids to Peptides, The Journal of Physical Chemistry C, vol.113, issue.39, pp.17138-17150, 2009.
DOI : 10.1021/jp906250w

T. Sakata, T. Kawai, and K. Hashimoto, Heterogeneous photocatalytic reactions of organic acids and water. New reaction paths besides the photo-Kolbe reaction, The Journal of Physical Chemistry, vol.88, issue.11, pp.2344-2350, 1984.
DOI : 10.1021/j150655a032

R. Howe and M. Gratzel, EPR observation of trapped electrons in colloidal titanium dioxide, The Journal of Physical Chemistry, vol.89, issue.21, pp.4495-4499, 1985.
DOI : 10.1021/j100267a018

J. Meichtry, C. Colbeau-justin, and G. Custo, TiO2-photocatalytic transformation of Cr(VI) in the presence of EDTA: Comparison of different commercial photocatalysts and studies by Time Resolved Microwave Conductivity, Applied Catalysis B: Environmental, vol.144, pp.189-195, 2014.
DOI : 10.1016/j.apcatb.2013.06.032

S. Boujday, F. Wünsch, and P. Portes, Photocatalytic and electronic properties of TiO2 powders elaborated by sol???gel route and supercritical drying, Solar Energy Materials and Solar Cells, vol.83, issue.4, pp.421-433, 2004.
DOI : 10.1016/j.solmat.2004.02.035

C. Emilio, M. Litter, and M. Kunst, Photocatalysts Related to Charge-Carrier Dynamics, Langmuir, vol.22, issue.8, pp.3606-3613, 2006.
DOI : 10.1021/la051962s

S. Kumar and L. Devi, Photocatalysis under UV/Visible Light: Selected Results and Related Mechanisms on Interfacial Charge Carrier Transfer Dynamics, The Journal of Physical Chemistry A, vol.115, issue.46, pp.13211-13241, 2011.
DOI : 10.1021/jp204364a

N. Serpone, J. Martin, and S. Horikoshi, Photocatalyzed oxidation and mineralization of C1???C5 linear aliphatic acids in UV-irradiated aqueous titania dispersions???kinetics, identification of intermediates and quantum yields, Journal of Photochemistry and Photobiology A: Chemistry, vol.169, issue.3, pp.235-251, 2005.
DOI : 10.1016/j.jphotochem.2004.07.001