S. Beilby, Aggregation and flow of solids, 1921.

J. Trogolo and K. Rajan, Near surface modification of silica structure induced by chemical/mechanical polishing, Journal of Materials Science, vol.66, issue.17, pp.4554-4558, 1994.
DOI : 10.1007/BF00376278

H. Bach, Analysis of surface layers, SPIE, vol.381, pp.113-128, 1983.

T. Suratwala, W. Steele, L. Wong, M. Feit, and P. Miller, Chemistry and Formation of the Beilby Layer During Polishing of Fused Silica Glass, Journal of the American Ceramic Society, vol.24, issue.3, 2015.
DOI : 10.1016/0079-6565(92)80001-V

H. Bach, Advanced surface analysis of silicate glasses, oxides and other insulating materials: a review, Journal of Non-Crystalline Solids, vol.209, issue.1-2, pp.1-18, 1997.
DOI : 10.1016/S0022-3093(96)00556-X

M. Kozlowski, J. Carr, I. Hutcheon, R. Torres, and L. Sheehan, Depth profiling of polishing-induced contamination on fused silica surfaces, Laser-Induced Damage in Optical Materials: 1997, pp.365-375, 1998.
DOI : 10.1117/12.307031

J. Neauport, L. Lamaignere, H. Bercegol, F. Pilon, and J. Birolleau, Polishing-induced contamination of fused silica optics and laser induced damage density at 351 nm, Optics Express, vol.13, issue.25, pp.10163-10171, 2005.
DOI : 10.1364/OPEX.13.010163

URL : https://hal.archives-ouvertes.fr/cea-01053354

N. Bloembergen, Role of Cracks, Pores, and Absorbing Inclusions on Laser Induced Damage Threshold at Surfaces of Transparent Dielectrics, Applied Optics, vol.12, issue.4, pp.661-664, 1973.
DOI : 10.1364/AO.12.000661

D. Camp, M. Kozlowski, L. Sheehan, M. Nichols, and M. Dovik, Subsurface damage and polishing compound affect the 355-nm laser F I G U R E 1 3 Depth profiles of cerium concentration measured by ICP-OES on a MRF polished sample (red) and on a MRF polished sample without chamfer (blue) [Color figure can be viewed at wileyonlinelibrary.com] damage threshold of fused silica surfaces, Laser-induced Damage in Optical Materials: 1997. Proc. SPIE, pp.356-364, 1998.

P. Miller, T. Suratwala, J. Bude, T. Laurence, and N. Shen, Identification of laser damage precursors in fused silica. Laser-induced Damage in Optical Materials, Proc. SPIE, 2009.

H. Liu, X. Ye, X. Zhou, J. Huang, and F. Wang, Subsurface defects characterization and laser damage performance of fused silica optics during HF-etched process, Optical Materials, vol.36, issue.5, pp.855-860, 2013.
DOI : 10.1016/j.optmat.2013.11.022

X. Jiang, Y. Liu, H. Rao, and S. Fu, Improve the laser damage resistance of fused silica by wet surface cleaning and optimized HF etch process, Pacific Rim Laser Damage 2013: Optical Materials for High Power Lasers
DOI : 10.1117/12.2020734

X. Gao, G. Feng, L. Zhai, and Z. Shouhuan, Effect of subsurface impurities of fused silica on laser-induced damage probability, Optical Engineering, vol.53, issue.2, 2014.
DOI : 10.1117/1.OE.53.2.026101

R. Catrin, J. Neauport, D. Taroux, P. Cormont, and C. Maunier, Magnetorheological finishing for removing surface and subsurface defects of fused silica optics, Optical Engineering, vol.53, issue.9, 2014.
DOI : 10.1117/1.OE.53.9.092010

Z. Wang, L. Wang, Y. J. Peng, W. Hu, and H. , Detection of subsurface trace impurity in polished fused silica with biological method, Optics Express, vol.22, issue.18, pp.21292-21301, 2014.
DOI : 10.1364/OE.22.021292

Z. Wang, L. Wang, W. Peng, Y. Cao, and J. Yang, Origin and distribution of redeposition layer in polished fused silica, Optical Engineering, vol.54, issue.8, 2015.
DOI : 10.1117/1.OE.54.8.085102

J. Wang, Y. Li, Z. Yuan, H. Ye, and R. Xie, Producing fused silica optics with high UV-damage resistance to nanosecond pulsed lasers. Pacific Rim Laser Damage 2015: Optical Materials for High-Power Lasers, Proc. SPIE, 2015.

H. Ye, Y. Li, Z. Yuan, J. Wang, and Q. Xu, Improving UV laser damage threshold of fused silica optics by wet chemical etching technique. Pacific Rim Laser Damage 2015: Optical Materials for High-Power Lasers, Proc. SPIE, 2015.

S. Suzuki and K. Kakita, A comparative study of GDOES, SIMS and XPS depth profiling of thin layers on metallic materials, Journal of surface analysis, vol.12, pp.174-177, 2005.

K. Shimizu, H. Habazaki, P. Skeldon, and G. Thompson, Radiofrequency GDOES: a powerful technique for depth profiling analysis of thin films, Surface and Interface Analysis, vol.35, issue.145, pp.564-574, 2003.
DOI : 10.4139/sfj1950.36.96

D. Golini, W. Kordonski, P. Dumas, and S. Hogan, <title>Magnetorheological finishing (MRF) in commercial precision optics manufacturing</title>, Optical Manufacturing and Testing III, pp.80-91, 1999.
DOI : 10.1117/12.369174

J. Pouchou, X-Ray Microanalysis of Thin Surface Films and Coatings, Microchimica Acta, vol.138, issue.3-4, pp.133-152, 2002.
DOI : 10.1007/s006040200020

K. Juskevicius, R. Buzelis, S. Kicas, T. Tolenis, and R. Drazdys, Investigation of subsurface damage impact on resistance of laser radiation of fused silica substrates. Laser-Induced damage in optical materials: 2013, Proc. SPIE, 2013.

D. Liao, X. Chen, C. Tang, R. Xie, and Z. Zhang, Characteristics of hydrolyzed layer and contamination on fused silica induced during polishing, Ceramics International, vol.40, issue.3, pp.4479-4483, 2014.
DOI : 10.1016/j.ceramint.2013.08.121

C. Battersby, L. Sheehan, and M. Kozlowski, Effects of wet etch processing on laser-induced damage of fused silica surfaces, Laserinduced Damage in Optical Materials: 1998. Proc. SPIE, pp.446-455, 1998.

T. Suratwala, P. Miller, J. Bude, W. Steele, and N. Shen, HF-Based Etching Processes for Improving Laser Damage Resistance of Fused Silica Optical Surfaces, Journal of the American Ceramic Society, vol.13, issue.[3], pp.416-428, 2010.
DOI : 10.1038/39827

M. Pfiffer, J. Longuet, and C. Labrug-ere, Characterization of the Polishing-Induced Contamination of Fused Silica Optics, Journal of the American Ceramic Society, vol.94, issue.2, pp.96-107, 2017.
DOI : 10.1111/j.1551-2916.2010.04112.x

URL : https://hal.archives-ouvertes.fr/cea-01622307