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We study the statistics of the power P dissipated by waves propagating in a one-dimensional disordered
medium with damping coefficient ν. An operator imposes the wave amplitude at one end, therefore injecting a
power P that balances dissipation. The typical realization of P vanishes for ν → 0: Disorder leads to localization
and total reflection of the wave energy back to the emitter, with negligible losses. More surprisingly, the mean
dissipated power 〈P 〉 averaged over the disorder reaches a finite limit for ν → 0. We show that this “anomalous
dissipation” limν→0 〈P 〉 is directly given by the integrated density of states of the undamped system. In some
cases, this allows us to compute the anomalous dissipation exactly, using properties of the undamped system
only. As an example, we compute the anomalous dissipation for weak correlated disorder and for Gaussian white
noise of arbitrary strength. Although the focus is on the singular limit ν → 0, we finally show that this approach
is easily extended to arbitrary ν.
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Anderson localization refers to the peculiar behavior of
waves propagating in a disordered medium: The eigenmodes
are localized in space and decay typically exponentially
away from a center point [1]. This phenomenon naturally
arises in quantum mechanics to describe the influence of
impurities on the electrical conductivity of metals at low
temperature. In macroscopic physics, wave localization is a
generic phenomenon as well, which applies to light [2–4],
sound [5,6], surface waves [7–9], and Rossby waves [10–12],
among other examples. Waves interacting with mean flows,
a common situation in oceanographic and atmospheric fluid
dynamics, can sometimes be recast into a Schrödinger equation
for a particle in a disordered electromagnetic field [13,14],
suggesting the possible occurrence of wave localization.

Such classical waves are necessarily dissipative, and in a
stationary state an energy source is needed to compensate
for dissipation. The present Rapid Communication deals with
the energy budget of systems of localized waves: How much
power is needed to sustain the waves? What are the statistics
of the dissipated power? Can we relate the dissipated power to
properties of the idealized undamped system?

Although the study of localization in mesoscopic physics
and in classical wave systems share many similarities, they
also differ in many respects: First, classical waves are
dissipated on a typical scale which can be much smaller
than the system size, making the system effectively infinite
from the point of view of the waves. Second, to study the
effect of disorder in a mesoscopic conductor, one typically
considers a wave incoming on a disordered region of finite
size. The electrical conductivity is then determined from the
transmission coefficients of the disordered region [15]. By
contrast, in many situations classical waves are forced directly
inside the disordered region. This is, for instance, the case
of a storm generating waves on a moving ocean [16]. While
the two situations are connected, this difference between an
incoming wave of finite amplitude and an internal source inside
the disordered region drastically modifies the statistics of the
power dissipated in the system, as pointed out by Klyatskin and
Saichev [17]: As shown in Fig. 1(b), imposing the oscillation
amplitude somewhere inside the disordered region allows for

rare events of extremely large dissipated power, whereas in the
case of an incoming wave of fixed amplitude this dissipated
power is always bounded by the finite incoming energy flux.

We address the questions raised in the outset for one-
dimensional semi-infinite systems, where the wave amplitude
is imposed at the origin. We emphasize the intuitive case of
the viscously damped semi-infinite string with inhomogeneous
density [see Fig. 1(a)], but the waves could equally be light,
sound, etc. In a stationary state, the operator maintaining the si-
nusoidal motion of the end point provides the power dissipated
by viscous friction. Intuitively, one expects this dissipated
power to be reduced by disorder: Strong disorder leads to
wave localization on a length scale �loc much shorter than the
viscous decay length �diss ∼ ν−1, where ν denotes the damping
coefficient; the waves are reflected back to the wavemaker by
the density inhomogeneities before they undergo significant
damping, and the input power is approximately zero.

Surprisingly, this intuition only holds for a typical real-
ization of the disorder: While the most probable value of the
dissipated power vanishes for vanishing damping coefficient ν,
the dissipated power averaged over the disorder reaches a finite
limit as ν → 0 [17]. Such a singular limit of the dissipated
power is reminiscent of the dissipation anomaly of turbulent
flows, which dissipate a finite power in the limit of vanishing
viscosity [18], and we therefore call it “anomalous dissipation”
in the present context as well. Its precise determination is of
central importance for the energetics of the systems mentioned
at the outset.

In the following, we compute the anomalous dissipation
in rather general situations, including correlated disorder and
disorder of arbitrary strength. To wit, we show that the
anomalous dissipation is given by the integrated density of
states of the undamped system, establishing a connection
between two a priori unrelated quantities. We can therefore
deduce the mean dissipated power from properties of the
undamped system only, by borrowing exact results on the
density of states of the latter.

The inhomogeneous string. We consider the system
sketched in Fig. 1(a): An inhomogeneous string occupies
the semi-infinite region x ∈ [0,∞[. In the rest position, it

2470-0045/2017/95(5)/050101(5) 050101-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevE.95.050101


RAPID COMMUNICATIONS

BASILE GALLET PHYSICAL REVIEW E 95, 050101(R) (2017)

h(x, t) ex

ey

1 + f(x)

x

|ĥ
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FIG. 1. (a) An operator imposes the sinusoidal motion of the end
point x = 0 of a semi-infinite inhomogeneous string. The parameters
are indicated in dimensionless form. (b) Solution of (5) for Ornstein-
Uhlenbeck disorder with σ = 1, � = 1, ν = 0.002, and L = 500.
Blue thick line: A typical realization. The amplitude rapidly decreases
as a result of localization. Black line: A rare event with large dissipated
power.

is subject to a uniform tension T0ex . It has inhomogeneous
linear density ρ(x) and its transverse motion h(x,t)ey is
subject to viscous friction with a damping coefficient μ. An
operator drives transverse waves of the string by imposing
a periodic sinusoidal motion of the end point x = 0 at
frequency ω: h(0,t) = a cos(ωt). Denoting the mean density
as ρ0 and the total density as ρ(x) = ρ0[1 + f (x)], we
nondimensionalize time with ω−1, x with ω−1√T0/ρ0, and
h(x,t) with a. Restricting attention to small-amplitude waves,
the dimensionless linear equation of motion reads

[1 + f (x)]∂tth − ∂xxh + ν∂th = 0, (1)

where the variables x, t , and h are now dimensionless, and ν =
μ/ρ0ω. The mean-zero function f (x) representing the density
fluctuations is a random process with homogeneous statistics in
x. The dimensionless boundary conditions are h(0,t) = cos(t)
and limx→∞ h(x,t) = 0. One can form the energy equation by
multiplying (1) with ∂th and integrating over the semi-infinite
domain,

dE
dt

= −∂th|0 ∂xh|0 − ν

∫ ∞

0
∂th

2dx, (2)

where

E =
∫ ∞

0
[1 + f (x)]

∂th
2

2
+ ∂xh

2

2
dx. (3)

The subscript ·|0 means “evaluated at x = 0.” The first term
on the right-hand side of (2) is the work done by the force
exerted by the operator to maintain the sinusoidal motion of
the end point. The second term is viscous dissipation. After
some transient, the system reaches a stationary state, for which
the dissipated power averaged over the wave period is

P = −∂th|0 ∂xh|0 = ν

∫ ∞

0
∂th2dx, (4)

where the overline denotes an average over the wave period.
P is the focus of this Rapid Communication.

The uniform system f (x) = 0 deserves a few comments:
The waves decay exponentially with x on a length scale
proportional to ν−1. For small ν, the dissipated power is
P = 1

2 , which corresponds to the energy that would be radiated
towards x → ∞ in an undamped infinite system. However,
this result crucially depends on the infinite-domain limit being
taken before the small-ν limit. Indeed, for a finite domain
x ∈ [0,L], when ν 	 1/L, a stationary wave forms inside the
domain and the input power is approximately zero.

We study the stationary state using Fourier transform
in time, h(x,t) = ĥ(x)eit + ĥ∗(x)e−it , where ∗ denotes the
complex conjugate. The equation of motion becomes

ĥ′′(x) + [1 − iν + f (x)]ĥ(x) = 0, (5)

where the prime denotes a derivative. The boundary conditions
are ĥ(0) = 1

2 and limx→∞ ĥ(x) = 0, and the injected power
becomes P = −Im{ĥ′(0)}.

Qualitatively, the process P results from the competition
between viscous damping and localization: Considering weak
disorder f (x) with standard deviation σ 	 1, the waves decay
exponentially on a typical scale min{�loc,�diss}, where �loc ∼
σ−2 is the localization length and �diss ∼ ν−1 is the damping
length. When �diss 	 �loc, viscous damping is the dominant
process and a power close to 1

2 is dissipated. By contrast,
when �loc 	 �diss, the waves get localized and totally reflected
before significant damping takes place, which leads to P � 0.
The competition between these two phenomena is governed
by the ratio S = σ/

√
ν.

To test these predictions, we first consider fluctuations
f (x) given by a stationary Ornstein-Uhlenbeck process with
standard deviation σ and correlation length �. We solve (5)
numerically by discretizing and inverting the linear operator
inside a domain x ∈ [0,L], with L large enough for the results
to be independent of L. In Fig. 2 we show the most probable
value Pmp of P for various σ and ν. Pmp goes to zero in the
limit of small damping ν or large disorder σ → ∞. Plotting
Pmp as a function of S leads to a good collapse of the data,
which indicates that Pmp is indeed governed by the competition
between localization and damping. This is illustrated by the
typical solution shown in Fig. 1(b), where the waves get
localized on a length scale much shorter than ν−1.

In contrast with Pmp, the mean dissipated power 〈P 〉 over
the realizations of the disorder has a very singular behavior (see
Fig. 2): It remains nonzero and is independent of the damping
coefficient ν for small ν. The observation of this singular
limit traces back to Klyatskin and Saichev [17], who showed
that the mean energy flux is unaffected by weak uncorrelated
disorder to lowest order in noise strength. Intuition on this
“dissipation anomaly” can be gathered from the rare event
displayed in Fig. 1: The motion of the end point excites modes
which are localized around center points xc far away from the
origin, resulting in a large wave amplitude over a significant
distance. These rare events are reminiscent of the transmission
resonances observed in finite-size systems [19,20]. They have
a large wave amplitude and contribute significantly to the
mean dissipated power 〈P 〉. The remainder of this Rapid
Communication is dedicated to the analytical computation of
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FIG. 2. Top: Most probable value of the dissipated power for
Ornstein-Uhlenbeck disorder with � = 1, and damping ν = 0.002 (•)
and ν = 0.02 (�). Rescaling σ with

√
ν leads to a good collapse of

the data, which highlights the competition between damping and
localization. Bottom: For small damping, the mean dissipated power
〈P 〉 over the disorder is finite and independent of ν (same symbols as
above). The solid line is the weak-disorder theoretical expression (16).

the mean dissipated power 〈P 〉, both for finite ν and in the
singular limit ν → 0.

A useful symmetry. Introducing the complex Riccati vari-
able R(x) = ĥ′(x)/ĥ(x), the equation of motion (5) becomes

R′(x) = −1 − f (x) + iν − R2(x), (6)

and the dissipated power is

P = − 1
2 Im{R(0)}. (7)

The idea is then the following: Consider a solution ĥ(x) to
Eq. (5) and a given abscissa x0 > 0. ĥ(x) satisfies the boundary
condition ĥ(0) = 1

2 . Define the translated and rescaled dis-
placement ĝ(y) = ĥ(x0 + y)/2ĥ(x0), which satisfies

ĝ′′(y) + [1 + f (x0 + y) − iν]ĝ(y) = 0, (8)

together with the boundary conditions ĝ(0) = 1
2 and

limy→∞ ĝ(y) = 0. In other words, it satisfies the same equation

and boundary conditions as ĥ, but for a translated noise
f (x0 + x). The input power for this translated realization of
the noise is

P = −Im{ĝ′(0)} = −Im

{
ĥ′(x0)

2ĥ(x0)

}
= −1

2
Im{R(x0)}. (9)

We conclude that the value of − 1
2 Im{R(x)} at each point

gives a realization of P for a translated version of the initial
realization of the noise. This method allows one to obtain many
realizations of P from a single numerical integration of the
Riccati equation (6), which drastically speeds up the numerical
determination of the statistics of P . For instance, to obtain the
average input power, one can integrate (6) numerically starting
from some initial condition with a negative imaginary part [21],
and average the resulting function to obtain

〈P 〉 = − 1
2 Im{〈R(x)〉x}, (10)

where 〈·〉x denotes an average over x. In the following,
we assume ergodicity: After some finite-length transient, the
process R(x) reaches a stationary state. Whenever needed, we
replace ensemble averages 〈·〉 in this stationary state by spatial
averages 〈·〉x , and vice versa.

Relation to the density of states. The relation (10) has useful
consequences. Indeed, 〈R(x)〉 is a central object of the theory
of localization called the characteristic exponent [22]. For
nondissipative waves satisfying the equation

ĥ′′(x) + [E + f (x)]ĥ(x) = 0, (11)

which is identical to the undamped version of (5) up to a change
of nondimensionalization, the characteristic exponent �(E) is
an analytic function of E in the upper half of the complex
plane [23], which reads

�(E) = γ (E) − iπN (E). (12)

Here, γ (E) is the Lyapunov exponent, i.e., the inverse
localization length for waves satisfying (11), and N (E) is the
integrated density of states per unit length. In the limit ν → 0,
Eq. (5) reduces to (11) with E = 1: The mean of the Riccati
variable R is therefore given by the characteristic exponent
�(E) for E = 1. Inserting the resulting value of 〈R〉 into (10)
leads to the following expression for the dissipation anomaly,

lim
ν→0

〈P 〉 = π

2
N (E = 1), (13)

where N (E = 1) is the integrated density of states of Eq. (11)
evaluated at E = 1. The relation (13) is useful in many
respects. First, it establishes a connection between the mean
dissipated power of the weakly damped system and the density
of states of the conservative one. Second, it provides a way to
readily compute the anomalous dissipation from known results
about the undamped system.

Weak-disorder expansion. The relation (10) is well suited
to compute the mean dissipated power in the weak-noise
limit. Consider weak disorder f (x) = εf̃ (x), with ε 	 1,
and expand the Riccati variable as R(x) = R0(x) + εR1(x) +
ε2R2(x) + O(ε3) before substituting into the Riccati equa-
tion (6). Solving at orders O(1) to O(ε2) and averaging yields,
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in the limit ν → 0,

R0 = −i, 〈εR1〉 = 0, (14)

〈ε2R2〉 = −1

4

∫ ∞

x=0
e−2ixC(x)dx, (15)

where R0 corresponds to the uniform string, and C(y) =
〈f (x)f (x + y)〉 denotes the two-point correlation function
of the disorder. As an example, substituting the correlation
function C(x) = σ 2e−|x|/� of Ornstein-Uhlenbeck fluctuations
leads to the following expression for the anomalous dissipa-
tion,

lim
ν→0

〈P 〉 = 1

2
− σ 2�2

16�2 + 4
+ O(σ 4). (16)

The O(σ 2) correction is negative, indicating that the anoma-
lous dissipation is less than the power that would be radiated
towards infinity in the absence of disorder. One can check that
this correction vanishes in the white-noise limit (� → 0, with
D = σ 2� constant), in agreement with Ref. [17]. For correlated
noise, (16) is in excellent agreement with the numerical values
of 〈P 〉 for weak noise and damping (see Fig. 2).

White noise of arbitrary strength. The Schrödinger equa-
tion (5) shows that our problem is analogous to particles
maintained at fixed concentration and energy (i.e., fre-
quency) at the boundary x = 0 of a disordered medium
with random potential and weak absorption ν 	 1 occupying
x > 0. P is then the flux of particles (and energy) into
the disordered medium: Surprisingly, a finite mean flux
〈P 〉 is absorbed by the medium in the limit of vanishing
absorption ν → 0.

Motivated by this context, we consider a second example,
where the disorder is Gaussian white noise with a correlation
function C(x) = Dδ(x), and follow a route other than pertur-
bative expansion: We consider disorder of arbitrary strength D

and borrow the exact expression of the characteristic exponent
determined by Halperin [24] to evaluate (13). In our notations
this leads to

lim
ν→0

〈P 〉 = −D1/3

24/3
Im

{
Ai′(ξ ) − i Bi′(ξ )

Ai(ξ ) − i Bi(ξ )

}
, (17)

where Ai and Bi denote Airy functions and ξ =
−(2/D)2/3. This prediction then reduces to limν→0 〈P 〉 =
D1/3{π24/3[Ai2(ξ ) + Bi2(ξ )]}−1, which is in excellent agree-
ment with the numerical results for arbitrary disorder strength
D and small ν (see the solid line in Fig. 3). Here, the anomalous
dissipation departs from 1

2 as D2 initially: There is no term
linear in D, in agreement with the vanishing O(σ 2) correction
in (16) in the white-noise limit. Interestingly, in contrast with
the Ornstein-Uhlenbeck case, the anomalous dissipation is
always greater than 1

2 : On average, it costs more power to
sustain the waves in the disordered system than in the absence
of disorder.

Discussion. Although the primary focus of this study is
the anomalous dissipation arising in the singular limit ν → 0,
the results can be easily extended to finite damping ν. Indeed,

0 5 10 15 20
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0.8
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FIG. 3. Mean dissipated power as a function of the strength D

of the white-noise disorder. Symbols are numerical solutions of the
Riccati equation for ν = 2 (�), ν = 1 (�), and ν = 0.05 (•). The
theoretical prediction is shown for ν = 2 (dashed-dotted), ν = 1
(dashed) and in the limit ν → 0 (solid).

Eq. (5) corresponds to (11) for E = 1 − iν. We cannot directly
inject this value into known expressions of �(E), because the
latter are valid in the upper half of the complex plane only.
We therefore introduce the function G(x) = −R∗(−x), which
satisfies Eq. (6) with iν replaced by −iν and f (x) by f (−x).
〈G〉 now corresponds to the characteristic exponent evaluated
at E = 1 + iν, which lies in the upper half of the complex
plane. Using Im〈R〉 = Im〈G〉, we finally obtain

〈P 〉 = − 1
2 Im{�(1 + iν)}

= − 1
2 Im{γ (1 + iν) − iπN (1 + iν)}. (18)

For the white-noise example presented above, taking into
account finite ν then simply amounts to substituting ξ =
−(2/D)2/3(1 + iν) into the right-hand side of (17). We show in
Fig. 3 that this prediction agrees perfectly with the numerical
solutions.

We conclude by stressing the fact that (12) and (13) allow
one to write Kramers-Kronig relations between the Lyapunov
exponent and the mean dissipated power [23]: The latter can
be written as an integral of the Lyapunov exponent for waves
at various frequencies (i.e., various energies E). Numerically,
such relations may allow one to estimate the mean dissipated
power from typical realizations of the disorder only, without
having to sample extensively the rare strongly dissipative
events.

The author thanks S. Aumaître, K. Mallick, J.-M. Luck,
E. Granet, T. Humbert, P. Roche, and J. Farago for insightful
discussions. This work is supported by Labex PALM ANR-
10-LABX-0039.

050101-4



RAPID COMMUNICATIONS

ENERGY-DISSIPATION ANOMALY IN SYSTEMS OF . . . PHYSICAL REVIEW E 95, 050101(R) (2017)

[1] P. W. Anderson, Phys. Rev. 109, 1492 (1958).
[2] F. Scheffold, R. Lenke, R. Tweer, and G. Maret, Nature (London)

398, 206 (1999).
[3] M. P. Van Albada and A. Lagendijk, Phys. Rev. Lett. 55, 2692

(1985).
[4] D. S. Wiersma, P. Bartolini, A. Lagendijk, and R. Righini, Nature

(London) 390, 671 (1997).
[5] I. S. Graham, L. Piché, and M. Grant, Phys. Rev. Lett. 64, 3135

(1990).
[6] T. R. Kirkpatrick, Phys. Rev. B 31, 5746 (1985).
[7] M. Belzons, E. Guazzelli, and O. Parodi, J. Fluid Mech. 186,

539 (1988).
[8] P. Devillard, F. Dunlop, and B. Souillard, J. Fluid Mech. 186,

521 (1988).
[9] E. Guazzelli, E. Guyon, and B. Souillard, J. Phys. Lett. 44, 837

(1983).
[10] V. I. Klyatskin, N. V. Gryanik, and D. Gurarie, Wave Motion 28,

333 (1998).
[11] D. Sengupta, L. I. Piterbarg, and G. M. Reznik, Dynam. Atmos.

Ocean 17, 1 (1992).

[12] D. Sengupta, J. Phys. Oceanogr. 24, 1065 (1994).
[13] W. R. Young and M. Ben Jelloul, J. Mar. Res. 55, 735 (1997).
[14] G. Falkovich, E. Kuznetsov, and S. Medvedev, Nonlinear

Process. Geophys. 1, 168 (1994).
[15] C. W. J. Beenakker, Rev. Mod. Phys. 69, 731 (1997).
[16] B. Gallet and W. R. Young, J. Mar. Res. 72, 105 (2014).
[17] V. I. Klyatskin and A. Saichev, Usp. Phys. Nauk 162, 161 (1992).
[18] U. Frisch, Turbulence: The Legacy of A. N. Kolmogorov

(Cambridge University Press, Cambridge, UK, 1995).
[19] I. M. Lifshitz and V. Ya. Kirpichenkov, Zh. Eksp. Theor. Fiz.

77, 989 (1979).
[20] M. Ya. Azbel and P. Soven, Phys. Rev. B 27, 831 (1983).
[21] We integrate (6) backwards in time to ensure Im{R} < 0,

which corresponds to solutions that do not receive energy from
x → +∞.

[22] J.-M. Luck, in Systèmes Désordonnés Unidimensionnels, edited
by C. Godrèche (Collection Alea Saclay, Gif-sur-Yvette, 1992)
(in French).

[23] D. J. Thouless, J. Phys. C 5, 77 (1972).
[24] B. I. Halperin, Phys. Rev. A 139, A104 (1965).

050101-5

https://doi.org/10.1103/PhysRev.109.1492
https://doi.org/10.1103/PhysRev.109.1492
https://doi.org/10.1103/PhysRev.109.1492
https://doi.org/10.1103/PhysRev.109.1492
https://doi.org/10.1038/18347
https://doi.org/10.1038/18347
https://doi.org/10.1038/18347
https://doi.org/10.1038/18347
https://doi.org/10.1103/PhysRevLett.55.2692
https://doi.org/10.1103/PhysRevLett.55.2692
https://doi.org/10.1103/PhysRevLett.55.2692
https://doi.org/10.1103/PhysRevLett.55.2692
https://doi.org/10.1038/37757
https://doi.org/10.1038/37757
https://doi.org/10.1038/37757
https://doi.org/10.1038/37757
https://doi.org/10.1103/PhysRevLett.64.3135
https://doi.org/10.1103/PhysRevLett.64.3135
https://doi.org/10.1103/PhysRevLett.64.3135
https://doi.org/10.1103/PhysRevLett.64.3135
https://doi.org/10.1103/PhysRevB.31.5746
https://doi.org/10.1103/PhysRevB.31.5746
https://doi.org/10.1103/PhysRevB.31.5746
https://doi.org/10.1103/PhysRevB.31.5746
https://doi.org/10.1017/S0022112088000266
https://doi.org/10.1017/S0022112088000266
https://doi.org/10.1017/S0022112088000266
https://doi.org/10.1017/S0022112088000266
https://doi.org/10.1017/S0022112088000254
https://doi.org/10.1017/S0022112088000254
https://doi.org/10.1017/S0022112088000254
https://doi.org/10.1017/S0022112088000254
https://doi.org/10.1051/jphyslet:019830044020083700
https://doi.org/10.1051/jphyslet:019830044020083700
https://doi.org/10.1051/jphyslet:019830044020083700
https://doi.org/10.1051/jphyslet:019830044020083700
https://doi.org/10.1016/S0165-2125(98)00019-5
https://doi.org/10.1016/S0165-2125(98)00019-5
https://doi.org/10.1016/S0165-2125(98)00019-5
https://doi.org/10.1016/S0165-2125(98)00019-5
https://doi.org/10.1016/0377-0265(92)90020-T
https://doi.org/10.1016/0377-0265(92)90020-T
https://doi.org/10.1016/0377-0265(92)90020-T
https://doi.org/10.1016/0377-0265(92)90020-T
https://doi.org/10.1175/1520-0485(1994)024<1065:LORWOR>2.0.CO;2
https://doi.org/10.1175/1520-0485(1994)024<1065:LORWOR>2.0.CO;2
https://doi.org/10.1175/1520-0485(1994)024<1065:LORWOR>2.0.CO;2
https://doi.org/10.1175/1520-0485(1994)024<1065:LORWOR>2.0.CO;2
https://doi.org/10.1357/0022240973224283
https://doi.org/10.1357/0022240973224283
https://doi.org/10.1357/0022240973224283
https://doi.org/10.1357/0022240973224283
https://doi.org/10.5194/npg-1-168-1994
https://doi.org/10.5194/npg-1-168-1994
https://doi.org/10.5194/npg-1-168-1994
https://doi.org/10.5194/npg-1-168-1994
https://doi.org/10.1103/RevModPhys.69.731
https://doi.org/10.1103/RevModPhys.69.731
https://doi.org/10.1103/RevModPhys.69.731
https://doi.org/10.1103/RevModPhys.69.731
https://doi.org/10.1357/002224014813758959
https://doi.org/10.1357/002224014813758959
https://doi.org/10.1357/002224014813758959
https://doi.org/10.1357/002224014813758959
https://doi.org/10.3367/UFNr.0162.199203d.0161
https://doi.org/10.3367/UFNr.0162.199203d.0161
https://doi.org/10.3367/UFNr.0162.199203d.0161
https://doi.org/10.3367/UFNr.0162.199203d.0161
https://doi.org/10.1103/PhysRevB.27.831
https://doi.org/10.1103/PhysRevB.27.831
https://doi.org/10.1103/PhysRevB.27.831
https://doi.org/10.1103/PhysRevB.27.831
https://doi.org/10.1088/0022-3719/5/1/010
https://doi.org/10.1088/0022-3719/5/1/010
https://doi.org/10.1088/0022-3719/5/1/010
https://doi.org/10.1088/0022-3719/5/1/010
https://doi.org/10.1103/PhysRev.139.A104
https://doi.org/10.1103/PhysRev.139.A104
https://doi.org/10.1103/PhysRev.139.A104
https://doi.org/10.1103/PhysRev.139.A104



