Laboratory based X-ray photoemission core-level spectromicroscopy of resistive oxide memories
Abstract
HfO$_2$-based resistive oxide memories are studied by core-level spectromicroscopy using a laboratory-based X-ray photoelectron emission microscope (XPEEM). After forming, the top electrode is thinned to about 1 nm for the XPEEM analysis, making the buried electrode/HfO$_2$ interface accessible whilst preserving it from contamination. The results are obtained in the true photoemission channel mode from individual memory cells (5 × 5 μm) excited by low-flux laboratory X-rays, in contrast to most studies employing the X-ray absorption channel using potentially harmful bright synchrotron X-rays. Analysis of the local Hf 4f, O 1s and Ti 2p core level spectra yields valuable information on the chemistry of the forming process in a single device, and in particular the central role of oxygen vacancies thanks to the spectromicroscopic approach.
Domains
Physics [physics]
Origin : Publisher files allowed on an open archive
Loading...