L. Shapiro, M. T. Franze-de-fernandez, and J. August, Resolution of Two Factors required in the Q??-RNA Polymerase Reaction, Nature, vol.220, issue.5166, pp.478-480, 1968.
DOI : 10.1038/220478a0

S. Gottesman and G. Storz, RNA reflections: converging on Hfq, RNA, vol.21, issue.4, pp.511-512, 2015.
DOI : 10.1261/rna.050047.115

URL : http://rnajournal.cshlp.org/content/21/4/511.full.pdf

V. Arluison and A. Taghbalout, Cellular Localization of RNA Degradation and Processing Components in Escherichia coli, Methods Mol Biol, vol.1259, pp.87-101, 2015.
DOI : 10.1007/978-1-4939-2214-7_6

D. Lay, N. Schu, D. J. Gottesman, and S. , Bacterial Small RNA-based Negative Regulation: Hfq and Its Accomplices, Journal of Biological Chemistry, vol.6, issue.12, pp.7996-8003, 2013.
DOI : 10.1038/nsmb.2296

N. Zambrano, bacterial cytoskeleton and cell division proteins, Cell Cycle, vol.8, issue.15, pp.2470-2472, 2009.
DOI : 10.4161/cc.8.15.9090

J. Gripenland, RNAs: regulators of bacterial virulence, Nature Reviews Microbiology, vol.4, issue.12, pp.857-866, 2010.
DOI : 10.1128/jb.178.3.683-690.1996

URL : https://digital.csic.es/bitstream/10261/48618/1/restringido.pdf

G. M. Cech, The Escherichia Coli Hfq Protein: An Unattended DNA-Transactions Regulator, Frontiers in Molecular Biosciences, vol.25, issue.36, p.36, 2016.
DOI : 10.1101/gad.16746011

URL : https://hal.archives-ouvertes.fr/hal-01534530

T. A. Azam, S. Hiraga, and A. Ishihama, Two types of localization of the DNA-binding proteins within the Escherichia coli nucleoid, Genes to Cells, vol.20, issue.8, pp.613-626, 2000.
DOI : 10.1016/0378-1119(92)90026-L

E. Diestra, B. Cayrol, V. Arluison, and C. Risco, Cellular Electron Microscopy Imaging Reveals the Localization of the Hfq Protein Close to the Bacterial Membrane, PLoS ONE, vol.4, issue.12, 2009.
DOI : 10.1371/journal.pone.0008301.g005

M. Guillier and S. Gottesman, Remodelling of the Escherichia coli outer membrane by two small regulatory RNAs, Molecular Microbiology, vol.176, issue.1, pp.231-247, 2006.
DOI : 10.1046/j.1365-2958.2003.03734.x

C. Mura, P. S. Randolph, J. Patterson, and A. Cozen, Archaeal and eukaryotic homologs of Hfq, RNA Biology, vol.10, issue.4, pp.636-651, 2013.
DOI : 10.1017/CBO9780511790492

URL : http://www.tandfonline.com/doi/pdf/10.4161/rna.24538?needAccess=true

C. J. Wilusz and J. Wilusz, Eukaryotic Lsm proteins: lessons from bacteria, Nature Structural & Molecular Biology, vol.279, issue.12, pp.1031-1036, 2005.
DOI : 10.1038/nsmb1037

R. G. Brennan and T. M. Link, Hfq structure, function and ligand binding, Current Opinion in Microbiology, vol.10, issue.2, pp.125-133, 2007.
DOI : 10.1016/j.mib.2007.03.015

T. M. Link, P. Valentin-hansen, and R. G. Brennan, Structure of Escherichia coli Hfq bound to polyriboadenylate RNA, Proceedings of the National Academy of Sciences, vol.10, issue.6, pp.19292-19297, 2009.
DOI : 10.1210/me.10.6.607

T. B. Updegrove, J. J. Correia, R. Galletto, W. Bujalowski, and R. M. Wartell, E. coli DNA associated with isolated Hfq interacts with Hfq's distal surface and C-terminal domain, Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms, vol.1799, issue.8, pp.588-596, 2010.
DOI : 10.1016/j.bbagrm.2010.06.007

E. Sauer, Structure and RNA-binding properties of the bacterial LSm protein Hfq, RNA Biology, vol.250, issue.4, pp.610-618, 2013.
DOI : 10.1093/nar/gkl217

K. Jiang, Effects of Hfq on the conformation and compaction of DNA, Nucleic Acids Research, vol.43, issue.8, pp.4332-4341, 2015.
DOI : 10.1093/nar/gkv268

URL : https://hal.archives-ouvertes.fr/hal-01534496

A. Malabirade, Compaction and condensation of DNA mediated by the C-terminal domain of Hfq, Nucleic Acids Research, vol.45, issue.12, 2017.
DOI : 10.1093/nar/gkx431

URL : https://hal.archives-ouvertes.fr/cea-01591370

M. A. Schumacher, R. F. Pearson, T. Moller, P. Valentin-hansen, and R. G. Brennan, Structures of the pleiotropic translational regulator Hfq and an Hfq-RNA complex: a bacterial Sm-like protein, The EMBO Journal, vol.21, issue.13, pp.3546-3556, 2002.
DOI : 10.1093/emboj/cdf322

C. Sauter, J. Basquin, and D. Suck, Sm-like proteins in Eubacteria: the crystal structure of the Hfq protein from Escherichia coli, Nucleic Acids Research, vol.31, issue.14, pp.4091-4098, 2003.
DOI : 10.1093/nar/gkg480

A. Nikulin, Hfq protein, Acta Crystallographica Section D Biological Crystallography, vol.61, issue.2, pp.141-146, 2005.
DOI : 10.1107/S0907444904030008

E. Sauer and O. Weichenrieder, Structural basis for RNA 3'-end recognition by Hfq, Proceedings of the National Academy of Sciences, vol.34, issue.9, pp.13065-13070, 2011.
DOI : 10.1093/nar/gkl347

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3156190

K. A. Stanek, J. Patterson-west, P. S. Randolph, and C. Mura, Crystal structure and RNA-binding properties of an Hfq homolog from the deep-branching Aquificae: conservation of the lateral RNA-binding mode, Acta Crystallographica Section D Structural Biology, vol.66, issue.4, pp.294-315, 2017.
DOI : 10.1107/S2059798317000031/yt5100sup1.pdf

H. A. Vincent, The low-resolution solution structure of Vibrio cholerae Hfq in complex with Qrr1 sRNA, Nucleic Acids Research, vol.40, issue.17, pp.8698-8710, 2012.
DOI : 10.1093/nar/gks582

M. Beich-frandsen, Structural insights into the dynamics and function of the C-terminus of the E. coli RNA chaperone Hfq, Nucleic Acids Research, vol.39, issue.11, 2011.
DOI : 10.1093/nar/gkq1346

V. Arluison, The C-terminal domain of Escherichia coli Hfq increases the stability of the hexamer, European Journal of Biochemistry, vol.7, issue.7, pp.1258-1265, 2004.
DOI : 10.1099/00221287-148-3-883

E. Fortas, New insight into the structure and function of Hfq C-terminus, Bioscience Reports, vol.112, issue.2, 2015.
DOI : 10.1002/anie.201000068

URL : https://hal.archives-ouvertes.fr/hal-01534472

C. Mura, M. Phillips, A. Kozhukhovsky, and D. Eisenberg, Structure and assembly of an augmented Sm-like archaeal protein 14-mer, Proceedings of the National Academy of Sciences, vol.298, issue.5598, pp.4539-4544, 2003.
DOI : 10.1126/science.1077945

URL : http://www.pnas.org/content/100/8/4539.full.pdf

V. Arluison, Three-dimensional Structures of Fibrillar Sm Proteins: Hfq and Other Sm-like Proteins, Journal of Molecular Biology, vol.356, issue.1, pp.86-96, 2006.
DOI : 10.1016/j.jmb.2005.11.010

URL : https://hal.archives-ouvertes.fr/hal-00090155

A. I. Herrera, J. M. Tomich, and O. Prakash, Membrane Interacting Peptides: A Review, Current Protein & Peptide Science, vol.17, issue.8, pp.827-841, 2016.
DOI : 10.2174/1389203717666160526123821

K. Mitra, I. Ubarretxena-belandia, T. Taguchi, G. Warren, and D. M. Engelman, Modulation of the bilayer thickness of exocytic pathway membranes by membrane proteins rather than cholesterol, Proceedings of the National Academy of Sciences, vol.37, issue.26, pp.4083-4088, 2004.
DOI : 10.1021/bi980233r

R. M. Epand and R. F. Epand, Domains in bacterial membranes and the action of antimicrobial agents, Molecular BioSystems, vol.101, issue.6, pp.580-587, 2009.
DOI : 10.1016/S0304-4157(98)00014-8

S. Maurer-stroh, Exploring the sequence determinants of amyloid structure using position-specific scoring matrices, Nature Methods, vol.4, issue.3, pp.237-242, 2010.
DOI : 10.1385/1-59259-874-9:067

M. Calero and M. Gasset, Featuring Amyloids with Fourier Transform Infrared and Circular Dichroism Spectroscopies, Methods Mol Biol, vol.849, pp.53-68, 2012.
DOI : 10.1007/978-1-61779-551-0_5

K. A. Obregon, C. T. Hoch, and M. V. Sukhodolets, Sm-like protein Hfq: Composition of the native complex, modifications, and interactions, Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, vol.1854, issue.8, pp.950-966, 2015.
DOI : 10.1016/j.bbapap.2015.03.016

H. M. Khan, A Role for Weak Electrostatic Interactions in Peripheral Membrane Protein Binding, Biophysical Journal, vol.110, issue.6, pp.1367-1378, 2016.
DOI : 10.1016/j.bpj.2016.02.020

M. Papanastasiou, Peripheral Inner Membrane Proteome, Molecular & Cellular Proteomics, vol.34, issue.3, pp.599-610, 2013.
DOI : 10.1042/BJ20121227

URL : http://www.mcponline.org/content/12/3/599.full.pdf

A. Taghbalout, Q. Yang, and V. Arluison, RNA processing and degradation machinery is compartmentalized within an organized cellular network, Biochemical Journal, vol.181, issue.1, pp.11-22, 2014.
DOI : 10.1074/jbc.M709118200

H. Chu, Human ??-Defensin 6 Promotes Mucosal Innate Immunity Through Self-Assembled Peptide Nanonets, Science, vol.355, issue.6359, pp.477-481, 2012.
DOI : 10.1038/355472a0

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4332406

N. Faruqui, Differentially Instructive Extracellular Protein Micro-nets, Journal of the American Chemical Society, vol.136, issue.22, pp.7889-7898, 2014.
DOI : 10.1021/ja411325c

A. Pyne, Engineering monolayer poration for rapid exfoliation of microbial membranes, Chem. Sci., vol.330, issue.2, pp.1105-1115, 2017.
DOI : 10.1111/j.1574-6968.2012.02528.x

D. Y. Haubertin, H. Madaoui, A. Sanson, R. Guerois, and S. Orlowski, Molecular Dynamics Simulations of E. coli MsbA Transmembrane Domain: Formation of a Semipore Structure, Biophysical Journal, vol.91, issue.7, pp.2517-2531, 2006.
DOI : 10.1529/biophysj.106.084020

H. O. Negrete, R. L. Rivers, A. H. Goughs, M. Colombini, and M. L. Zeidel, Individual Leaflets of a Membrane Bilayer Can Independently Regulate Permeability, Journal of Biological Chemistry, vol.264, issue.20, pp.11627-11630, 1996.
DOI : 10.1038/ki.1992.357

L. Milanesi, Direct three-dimensional visualization of membrane disruption by amyloid fibrils, Proceedings of the National Academy of Sciences, vol.135, issue.3, pp.20455-20460, 2012.
DOI : 10.1006/jsbi.2001.4406

K. Stroobants, Amyloid-like fibrils from an alpha-helical transmembrane protein, Biochemistry, pp.7-00157, 2017.
DOI : 10.1021/acs.biochem.7b00157

URL : http://doi.org/10.1021/acs.biochem.7b00157

V. Khemici, L. Poljak, B. F. Luisi, and A. J. Carpousis, The RNase E of Escherichia coli is a membrane-binding protein, Mol Microbiol, vol.70, pp.799-813, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00356021

F. Lu and A. Taghbalout, Membrane Association via an Amino-terminal Amphipathic Helix Is Required for the Cellular Organization and Function of RNase II, Journal of Biological Chemistry, vol.70, issue.10, pp.7241-7251, 2013.
DOI : 10.1111/j.1365-2958.2004.04329.x

Y. Wu, H. W. Huang, and G. A. Olah, Method of oriented circular dichroism, Biophysical Journal, vol.57, issue.4, pp.797-806, 1990.
DOI : 10.1016/S0006-3495(90)82599-6

A. Ghosal, The extracellular RNA complement of Escherichia coli. Microbiologyopen. doi:10.1002/mbo3, p.235, 2015.

T. C. Jackson and M. V. Sukhodolets, Functional analyses of putative PalS (Palindromic Self-recognition) motifs in bacterial Hfq, Biochem Biophys Res Commun, p.160, 2017.

P. J. De-pablo, J. Colchero, J. Gomez-herrero, and A. Baro, Jumping mode scanning force microscopy, Applied Physics Letters, vol.65, issue.22, pp.3300-3302, 1998.
DOI : 10.1116/1.585188

I. Horcas, : A software for scanning probe microscopy and a tool for nanotechnology, Review of Scientific Instruments, vol.78, issue.1, p.13705, 2007.
DOI : 10.1038/nmat1297

URL : http://aip.scitation.org/doi/pdf/10.1063/1.2432410

C. A. Schneider, W. S. Rasband, and K. W. Eliceiri, NIH Image to ImageJ: 25 years of image analysis, Nature Methods, vol.42, issue.7, pp.671-675, 2012.
DOI : 10.2144/000112257

C. O. Sorzano, Marker-free image registration of electron tomography tilt-series, BMC Bioinformatics, vol.10, issue.1, pp.10-1186, 2009.
DOI : 10.1186/1471-2105-10-124

URL : https://bmcbioinformatics.biomedcentral.com/track/pdf/10.1186/1471-2105-10-124?site=bmcbioinformatics.biomedcentral.com

M. Refregiers, DISCO synchrotron-radiation circular-dichroism endstation at SOLEIL, Journal of Synchrotron Radiation, vol.59, issue.5, pp.831-835, 2012.
DOI : 10.1366/0003702055012546

URL : https://hal.archives-ouvertes.fr/hal-01480932

F. Wien and B. A. Wallace, Calcium Fluoride Micro Cells for Synchrotron Radiation Circular Dichroism Spectroscopy, Applied Spectroscopy, vol.19, issue.9, pp.1109-1113, 2005.
DOI : 10.2116/analsci.19.129

J. G. Lees, B. R. Smith, F. Wien, A. J. Miles, and B. A. Wallace, CDtool???an integrated software package for circular dichroism spectroscopic data processing, analysis, and archiving, Analytical Biochemistry, vol.332, issue.2, pp.285-289, 2004.
DOI : 10.1016/j.ab.2004.06.002

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.125.5960

A. Micsonai, Accurate secondary structure prediction and fold recognition for circular dichroism spectroscopy, Proceedings of the National Academy of Sciences, vol.4, issue.1, pp.3095-3103, 2015.
DOI : 10.1039/b306055c

URL : https://hal.archives-ouvertes.fr/hal-01485547

G. G. Carmichael, K. Weber, A. Niveleau, and A. J. Wahba, The host factor required for RNA phage Qb RNA replication in vitro, J. Biol. Chem, vol.250, pp.3607-3612, 1975.

M. Rabhi, The Sm-like RNA chaperone Hfq mediates transcription antitermination at Rho-dependent terminators, The EMBO Journal, vol.31, issue.14, pp.2805-2816, 2011.
DOI : 10.1093/nar/gkg595

URL : https://hal.archives-ouvertes.fr/hal-00720713