S. Iijima, Helical microtubules of graphitic carbon, Nature, vol.354, issue.6348, pp.56-58, 1991.
DOI : 10.1038/354056a0

R. Tenne, Inorganic nanotubes and fullerene-like nanoparticles, Nature Nanotechnology, vol.109, issue.2, pp.103-111, 2006.
DOI : 10.1038/nnano.2006.62

B. Ni, H. Liu, P. Wang, J. He, and X. Wang, General synthesis of inorganic single-walled nanotubes, Nature Communications, vol.130, issue.8756, p.2015
DOI : 10.1021/ja803343m

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4640082

K. Wada, N. Yoshinaga, K. Yotsumoto, K. Ibe, and S. Aida, High Resolution Electron Micrographs of Imogolite, Clay Minerals, vol.8, issue.4, pp.487-489, 1970.
DOI : 10.1180/claymin.1970.008.4.11

V. C. Farmer, A. R. Fraser, and J. M. Tait, Synthesis of imogolite: a tubular aluminium silicate polymer, Journal of the Chemical Society, Chemical Communications, vol.13, issue.13, pp.462-463, 1977.
DOI : 10.1039/c39770000462

S. M. Barrett, P. M. Budd, and C. Price, The synthesis and characterization of imogolite, European Polymer Journal, vol.27, issue.7
DOI : 10.1016/0014-3057(91)90144-D

J. Bottero, Synthesis of Imogolite Fibers from Decimolar Concentration at Low Temperature and Ambient Pressure: A Promising Route for Inexpensive Nanotubes, J
URL : https://hal.archives-ouvertes.fr/hal-01519370

A. Chemmi, J. Brendle, C. Marichal, and B. Lebeau, Key Steps Influencing the Formation of Aluminosilicate Nanotubes by the Fluoride Route, Clays and Clay Minerals, vol.63, issue.2, pp.132-143, 2015.
DOI : 10.1346/CCMN.2015.0630205

S. Mukherjee, V. A. Bartlow, and S. Nair, Phenomenology of the Growth of Single-Walled Aluminosilicate and Aluminogermanate Nanotubes of Precise Dimensions, Chemistry of Materials, vol.17, issue.20, pp.4900-4909, 2005.
DOI : 10.1021/cm0505852

E. Doelsch, J. Rose, and A. Thill, Evidence of Double-Walled Al-Ge Imogolite-Like Nanotubes. A Cryo-TEM and SAXS Investigation, J. Am. Chem. Soc, vol.132, pp.1208-1209, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00646091

D. Borschneck and A. Masion, Structural Incorporation of Iron into Ge-Imogolite Nanotubes: A Promising Step for Innovative Nanomaterials, pp.49827-49830, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01157201

P. Allia, F. S. Freyria, E. Garrone, and B. Bonelli, Fe Isomorphic Substitution versus Fe 2 O 3 Clusters Formation in Fe-Doped Aluminosilicate Nanotubes (Imogolite) J

C. Zanzottera, A. Vicente, M. Armandi, C. Fernandez, E. Garrone et al., Thermal Collapse of Single-Walled Alumino-Silicate Nanotubes: Transformation Mechanisms and Morphology of the Resulting Lamellar Phases, The Journal of Physical Chemistry C, vol.116, issue.44, pp.23577-23584, 2012.
DOI : 10.1021/jp3090638

W. Ma, H. Otsuka, and A. Takahara, Poly(methyl methacrylate) grafted imogolite nanotubes prepared through surface-initiated ARGET ATRP, Chemical Communications, vol.123, issue.20, pp.5813-5815, 2011.
DOI : 10.1021/ja010235q

K. Shikinaka, A. Abe, and K. Shigehara, Nanohybrid film consisted of hydrophobized imogolite and various aliphatic polyesters, Polymer, vol.68, issue.17, pp.279-283, 2015.
DOI : 10.1016/j.polymer.2015.05.039

M. Bonini, A. Gabbani, S. Del-buffa, F. Ridi, P. Baglioni et al., Adsorption of Amino Acids and Glutamic Acid-Based Surfactants on Imogolite Clays, Langmuir, vol.33, issue.9, pp.2411-2419, 2017.
DOI : 10.1021/acs.langmuir.6b04414

L. Guimaraes, A. N. Enyashin, J. Frenzel, T. Heine, H. A. Duarte et al., Imogolite Nanotubes: Stability, Electronic, and Mechanical Properties, Imogolite Nanotubes: Stability, Electronic, and Mechanical Properties, pp.362-368, 2007.
DOI : 10.1021/nn700184k

M. P. Lourenco, L. Guimaraes, M. C. Da-silva, C. De-oliveira, T. Heine et al., Nanotubes With Well-Defined Structure: Single- and Double-Walled Imogolites, The Journal of Physical Chemistry C, vol.118, issue.11
DOI : 10.1021/jp411086f

A. Thill, B. Guiose, M. Bacia-verloop, V. Geertsen, and L. Belloni, OH Imogolite Nanotubes Are Controlled by an Adhesion versus Curvature Competition, The Journal of Physical Chemistry C, vol.116, issue.51, pp.26841-26849, 2012.
DOI : 10.1021/jp310547k

URL : https://hal.archives-ouvertes.fr/hal-01179748

M. S. Amara, E. Paineau, S. Rouzière, B. Guiose, M. M. Krapf et al., Hybrid, Tunable-Diameter, Metal Oxide Nanotubes for Trapping of Organic Molecules, Chemistry of Materials, vol.27, issue.5, pp.1488-1494, 2015.
DOI : 10.1021/cm503428q

URL : https://hal.archives-ouvertes.fr/hal-01187786

S. Nair, Shaping Single-Walled Metal Oxide Nanotubes from Precursors of Controlled Curvature, Nano Lett, vol.2012, issue.12, pp.827-832

M. Kiwi, Advancements in the Synthesis of Building Block Materials: Experimental Evidence and Modeled Interpretations of the Effect of Na and K on Imogolite Synthesis, J

H. Lee, Y. Jeon, Y. Lee, S. U. Lee, A. Takahara et al., Thermodynamic Control of Diameter-Modulated Aluminosilicate Nanotubes, The Journal of Physical Chemistry C, vol.118, issue.15, pp.8148-8152, 2014.
DOI : 10.1021/jp411725z

W. Ma, W. O. Yah, H. Otsuka, and A. Takahara, Application of imogolite clay nanotubes in organic???inorganic nanohybrid materials, Journal of Materials Chemistry, vol.7, issue.148, pp.11887-11892, 2012.
DOI : 10.1046/j.1365-294x.1998.00339.x

A. Thill, P. Launois, and P. Davidson, A Liquid-Crystalline Hexagonal Columnar Phase in Highly-Dilute Suspensions of Imogolite Nanotubes, Nat. Commun, 2016.
URL : https://hal.archives-ouvertes.fr/cea-01251618

K. Shikinaka, Design of stimuli-responsive materials consisting of the rigid cylindrical inorganic polymer ???imogolite???, Polymer Journal, vol.216, issue.6, 2016.
DOI : 10.1002/macp.201500265

K. Shikinaka, N. Taki, K. Kaneda, and Y. Tominaga, Quasi-solid electrolyte: a thixotropic gel of imogolite and an ionic liquid, Chem. Commun., vol.459, issue.6, pp.2017-613
DOI : 10.1016/j.colsurfa.2014.06.035

E. Shafia, S. Esposito, M. Armandi, E. Bahadori, E. Garrone et al., Reactivity of bare and Fe-doped alumino-silicate nanotubes (imogolite) with H2O2 and the azo-dye Acid Orange 7, Catalysis Today, vol.277, pp.89-96, 2016.
DOI : 10.1016/j.cattod.2015.10.011

A. A. Mostofi, C. Skylaris, P. D. Haynes, and G. Teobaldi, The Potential of Imogolite Nanotubes as (Co-)Photocatalysts: A Linear-Scaling Density Functional Theory Study, J

D. Mostofi, A. A. Skylaris, C. Haynes, and P. , Chemically Selective Alternatives to Photoferroelectrics for Polarization?Enhanced Photocatalysis: The Untapped Potential of Hybrid Inorganic Nanotubes, Adv. Sci, vol.4, p.1600153, 2016.

C. W. Jones and S. Nair, Single-Walled Aluminosilicate Nanotube, Poly(vinyl Alcohol)

C. Zanzottera, M. Armandi, S. Esposito, E. Garrone, and B. Bonelli, Adsorption on Aluminosilicate Single-Walled Nanotubes of Imogolite Type, The Journal of Physical Chemistry C, vol.116, issue.38, pp.20417-20425, 2012.
DOI : 10.1021/jp3061637

D. Kang, M. E. Lydon, G. I. Yucelen, C. W. Jones, and S. Nair, Solution-Processed Ultrathin Aluminosilicate Nanotube-Poly(vinyl alcohol) Composite Membranes with Partial Alignment of Nanotubes, ChemNanoMat, vol.5, issue.2, pp.102-108, 2015.
DOI : 10.1021/ma200864s

K. Wada and N. Yoshinaga, The Structure of Imogolite, Am. Miner, vol.54, pp.50-71, 1969.

K. Wada and T. Henmi, Characterization of Micropores of Imogolite by Measuring Retention of Quaternary Ammonium Chlorides and Water. Clay Sci, pp.127-136, 1972.

W. C. Ackerman, D. M. Smith, J. C. Huling, Y. W. Kim, J. K. Bailey et al., Gas/vapor adsorption in imogolite: a microporous tubular aluminosilicate, Langmuir, vol.9, issue.4, pp.1051-1057, 1993.
DOI : 10.1021/la00028a029

P. I. Pohl, J. L. Faulon, and D. M. Smith, Pore Structure of Imogolite Computer Models, Langmuir, vol.12, issue.18, pp.4463-4468, 1996.
DOI : 10.1021/la9600715

B. Creton, D. Bougeard, K. S. Smirnov, J. Guilment, and O. Poncelet, Molecular Dynamics Study of Hydrated Imogolite. 1. Vibrational Dynamics of the Nanotube, The Journal of Physical Chemistry C, vol.112, issue.27, pp.10013-10020, 2008.
DOI : 10.1021/jp800802u

URL : https://hal.archives-ouvertes.fr/hal-00293289

J. Zang, S. Nair, and D. S. Sholl, Osmotic ensemble methods for predicting adsorption-induced structural transitions in nanoporous materials using molecular simulations, The Journal of Chemical Physics, vol.19, issue.18
DOI : 10.1180/mono-5

K. Tamura and K. Kawamura, Molecular Dynamics Modeling of Tubular Aluminum Silicate:?? Imogolite, The Journal of Physical Chemistry B, vol.106, issue.2, pp.271-278, 2002.
DOI : 10.1021/jp0124793

D. Kang, J. Zang, E. R. Wright, A. L. Mccanna, C. W. Jones et al., Dehydration, Dehydroxylation, and Rehydroxylation of Single-Walled Aluminosilicate Nanotubes, ACS Nano, vol.4, issue.8, pp.4897-4907, 2010.
DOI : 10.1021/nn101211y

M. S. Amara, S. Rouzière, E. Paineau, M. Bacia-verloop, A. Thill et al., Hexagonalization of Aluminogermanate Imogolite Nanotubes Organized into Closed-Packed Bundles, The Journal of Physical Chemistry C, vol.118, issue.17, pp.9299-9306, 2014.
DOI : 10.1021/jp5029678

URL : https://hal.archives-ouvertes.fr/hal-01157204

A. Thess, R. Lee, P. Nikolaev, and H. Dai, Crystalline Ropes of Metallic Carbon Nanotubes, Science, vol.273, issue.5274, p.483, 1996.
DOI : 10.1126/science.273.5274.483

C. J. Clark and M. B. Mcbride, Cation and Anion Retention by Natural and Synthetic Allophane and Imogolite, Clays and Clay Minerals, vol.32, issue.4, pp.291-299, 1984.
DOI : 10.1346/CCMN.1984.0320407

URL : http://doi.org/10.1346/ccmn.1984.0320407

C. M. Su and J. Harsh, The Electrophoretic Mobility of Imogolite and Allophane in the Presence of Inorganic Anions and Citrate, Clays Clay Miner, vol.41, pp.461-471, 1993.

V. C. Farmer, A. R. Fraser, and J. M. Tait, Characterization of the chemical structures of natural and synthetic aluminosilicate gels and sols by infrared spectroscopy, Geochimica et Cosmochimica Acta, vol.43, issue.9, pp.1417-1420, 1979.
DOI : 10.1016/0016-7037(79)90135-2

J. P. Gustafsson, The Surface Chemistry of Imogolite, Clays and Clay Minerals, vol.49, issue.1, pp.73-80, 2001.
DOI : 10.1346/CCMN.2001.0490106

G. Teobaldi, N. S. Beglitis, A. J. Fisher, F. Zerbetto, and A. A. Hofer, Hydroxyl vacancies in single-walled aluminosilicate and aluminogermanate nanotubes, Journal of Physics: Condensed Matter, vol.21, issue.19, 2009.
DOI : 10.1088/0953-8984/21/19/195301

URL : http://arxiv.org/pdf/0803.3915

S. Rouzière, E. Jourdanneau, B. Kasmi, P. Joly, D. Petermann et al., A laboratory X-ray microbeam for combined X-ray diffraction and fluorescence measurements, Journal of Applied Crystallography, vol.67, issue.5, pp.1131-1133, 2010.
DOI : 10.1107/S0021889810027901

V. A. Solé, E. Papillon, M. Cotte, P. Walter, and J. Susini, A multiplatform code for the analysis of energy-dispersive X-ray fluorescence spectra, Spectrochimica Acta Part B: Atomic Spectroscopy, vol.62, issue.1
DOI : 10.1016/j.sab.2006.12.002

B. Abécassis, MOMAC: A SAXS/WAXS Laboratory Instrument Dedicated to Nanomaterials, J. Appl. Crystallogr, vol.49, pp.1624-1631, 2016.

S. Rols, R. Almairac, L. Henrard, E. Anglaret, and J. Sauvajol, Diffraction by finite-size crystalline bundles of single wall nanotubes, The European Physical Journal B, vol.10, issue.2, pp.263-270, 1999.
DOI : 10.1007/s100510050854

E. Paineau, P. Albouy, S. Rouzière, A. Orecchini, S. Rols et al., X-ray Scattering Determination of the Structure of Water during Carbon Nanotube Filling, Nano Letters, vol.13, pp.1751-1756, 2013.
DOI : 10.1021/nl400331p

S. Rouzière, M. S. Amara, and E. Paineau, Launois, P. Deformations and Thermal Modifications of Imogolite, In Nanosized Tubular Clay Minerals; Developments in Clay Science, p.778

F. Martin, S. Petit, O. Grauby, and M. P. Lavie, Gradual H/D substitution in synthetic germanium bearing talcs: a method for infrared band assignment, Clay Minerals, vol.34, issue.2, pp.365-374, 1999.
DOI : 10.1180/000985599546154

V. Farmer, M. Adams, A. Fraser, and F. Palmieri, Synthetic Imogolite: Properties, Synthesis, and Possible Applications, Clay Minerals, vol.18, issue.4, pp.459-472, 1983.
DOI : 10.1180/claymin.1983.018.4.11

J. Harsh, S. Traina, J. Boyle, and Y. Yang, Adsorption of Cations on Imogolite and Their Effect on Surface Charge Characteristics1, Clays and Clay Minerals, vol.40, issue.6, pp.700-706, 1992.
DOI : 10.1346/CCMN.1992.0400609

N. Arancibia-miranda, M. Escudey, M. Molina, T. Garcia-gonzalez, and M. , Kinetic and Surface Study of Single-Walled Aluminosilicate Nanotubes and Their Precursors, Nanomaterials, vol.116, issue.1, pp.126-140
DOI : 10.1002/adma.200901172

URL : http://www.mdpi.com/2079-4991/3/1/126/pdf

G. Frenzilli, P. Lucchesi, M. Nigro, V. Scarcelli, M. Tomatis et al., Imogolite: An Aluminosilicate Nanotube Endowed with Low Cytotoxicity and Genotoxicity, Chem. Res. Toxicol, vol.27, pp.1142-1154, 2014.

H. Hoshino, H. Urakawa, N. Donkai, and K. Kajiwara, Simulation of mesophase formation of rodlike molecule, imogolite, Polymer Bulletin, vol.339, issue.2, pp.257-264, 1996.
DOI : 10.1007/BF00294915

J. Tao, N. Huang, J. Li, M. Chen, C. Wei et al., Modulating the Arrangement of Charged Nanotubes by Ionic Strength in Salty Water, The Journal of Physical Chemistry Letters, vol.5, issue.7, pp.1187-1191, 2014.
DOI : 10.1021/jz5003132

G. C. Wong, A. Lin, J. X. Tang, Y. Li, P. A. Janmey et al., Lamellar Phase of Stacked Two-Dimensional Rafts of Actin Filaments, Physical Review Letters, vol.19, issue.1, p.91, 2003.
DOI : 10.1083/jcb.110.5.1645

H. Nishioka, H. Jinnai, and T. Okajima, Observation of the Three-Dimensional Structure of Actin Bundles Formed with Polycations, Biomacromolecules, vol.9, pp.537-542, 2008.

J. N. Israelachvili, Intermolecular and Surface Forces, 2015.

G. I. Yucelen, R. P. Choudhury, J. Leisen, S. Nair, and H. W. Beckham, Defect Structures in Aluminosilicate Single-Walled Nanotubes: A Solid-State Nuclear Magnetic Resonance Investigation, The Journal of Physical Chemistry C, vol.116, issue.32, pp.17149-17157, 2012.
DOI : 10.1021/jp3059728

G. Teobaldi, N. S. Beglitis, A. J. Fisher, F. Zerbetto, and W. A. Hofer, Hydroxyl vacancies in single-walled aluminosilicate and aluminogermanate nanotubes, Journal of Physics: Condensed Matter, vol.21, issue.19, 2009.
DOI : 10.1088/0953-8984/21/19/195301

URL : http://arxiv.org/pdf/0803.3915