Spinors for everyone - Archive ouverte HAL Access content directly
Other Publications Year : 2017

Spinors for everyone

(1)
1

Abstract

It is hard to find intuition for spinors in the literature. We provide this intuition by explaining all the underlying ideas in a way that can be understood by everybody who knows the definition of a group, complex numbers and matrix algebra. We first work out these ideas for the representation SU(2) of the three-dimensional rotation group in R 3. In a second stage we generalize the approach to rotation groups in vector spaces R n of arbitrary dimension n > 3, endowed with an Euclidean metric. The reader can obtain this way an intuitive understanding of what a spinor is. We discuss the meaning of making linear combinations of spinors.
Fichier principal
Vignette du fichier
1-Spinors-for-every-one-typos.pdf (874.64 Ko) Télécharger le fichier
Vignette du fichier
Herwerkt-Heliconius-cydno-6F.pdf (295.41 Ko) Télécharger le fichier
Origin : Files produced by the author(s)
Origin : Files produced by the author(s)

Dates and versions

cea-01572342 , version 1 (07-08-2017)

Identifiers

  • HAL Id : cea-01572342 , version 1

Cite

Gerrit Coddens. Spinors for everyone. 2017. ⟨cea-01572342⟩
3255 View
9212 Download

Share

Gmail Facebook Twitter LinkedIn More