Effect of laser shock peening on the high temperature oxidation resistance of titanium

Abstract : The effect of laser shock peening on the high temperature oxidation resistance of commercial pure titanium at high temperature (700 °C) was studied in long-time (3000 h) exposure under dry air. A reduction of the gain mass by a factor 4 was found for laser-shock peened (LSP) samples compared to untreated titanium, which supports the interest of laser-shock treatment for the improvement of high temperature resistance. Short-durations (10 h and 100 h) oxidation experiments, devoted to investigate the influence of the LSP treatment on the first stages of the oxidation process, were also carried out by TGA. Several techniques as scanning electron microsco-py, hardness and roughness measurements, X-ray diffraction and X-ray photoelectron spectrometry, micro-Raman spectroscopy, nuclear reaction analysis and electron backscattered diffraction were used to characterize the sample after laser treatment and oxidations. The formation of a continuous nitrogen-rich layer between the oxide layer and the α-case area in LSP samples appears to be the key factor to explain the reduction of oxygen diffusion, and thus the improvement of the oxidation resistance of laser shocked titanium. Moreover, the grain-texture of LSP samples after oxidation can also explain the improvement of the high temperature oxidation resistance after long times exposures.
Document type :
Journal articles
Complete list of metadatas

Cited literature [35 references]  Display  Hide  Download

https://hal-cea.archives-ouvertes.fr/cea-01570529
Contributor : Serge Palacin <>
Submitted on : Friday, January 5, 2018 - 2:36:33 PM
Last modification on : Wednesday, June 12, 2019 - 5:01:41 PM

File

PIMM - SCT - KANJER - 2017.pdf
Files produced by the author(s)

Identifiers

Citation

M Kanjer, M Lavisse, M Optasanu, Pascal Berger, M Gorny, et al.. Effect of laser shock peening on the high temperature oxidation resistance of titanium. Surface and Coatings Technology, Elsevier, 2017, 326, pp.146 - 155. ⟨10.1016/j.surfcoat.2017.07.042⟩. ⟨cea-01570529⟩

Share

Metrics

Record views

366

Files downloads

335