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We report the experimental evidence of the existence of a random attractor in a fully developed turbulent
swirling flow. By defining a global observable which tracks the asymmetry in the flux of angular
momentum imparted to the flow, we can first reconstruct the associated turbulent attractor and then follow
its route towards chaos. We further show that the experimental attractor can be modeled by stochastic
Duffing equations, that match the quantitative properties of the experimental flow, namely, the number of
quasistationary states and transition rates among them, the effective dimensions, and the continuity of the
first Lyapunov exponents. Such properties can be recovered neither using deterministic models nor using
stochastic differential equations based on effective potentials obtained by inverting the probability
distributions of the experimental global observables. Our findings open the way to low-dimensional
modeling of systems featuring a large number of degrees of freedom and multiple quasistationary states.
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In the absence of external forcing, the only stationary
state of a viscous flow is the trivial zero-velocity state. This
state obviously respects all the symmetries of the system.
Subject to a given forcing of intensity μ, the trivial state can
reach a nontrivial steady state (SS), the characteristics of
which depend on μ and symmetry properties of the forcing.
For μ below a critical value μc, the SS is time independent
and respects all the symmetries of the forcing compatible
with the boundary conditions. As μ is increased past μc, the
SS gradually breaks all the forcing symmetries, resulting in
fluid motion switching from time independent to periodic,
chaotic, and ultimately reaching—at μ ¼ μT ≫ μc—a tur-
bulent state in which fluid motion is extremely irregular.
This state, however, recovers all the symmetries of the
forcing and the system in a statistical sense [1]. The
turbulent flow is characterized by a dynamics with a large
number of degrees of freedom, resulting from the wide
range between the length scale at which energy is injected
and the scale at which it is dissipated. This motivated
Landau [2] to describe it as a quasiperiodic state, i.e., the
superposition of a growing number of modes with incom-
mensurate oscillation frequencies, resulting from an infinite
number of bifurcations with increasing μ. This picture was
challenged by Ruelle and Takens [3], who proved that
turbulent states are, in general, not quasiperiodic and

conjectured that they could be described by a small number
of degrees of freedom, i.e., by a low-dimensional “strange
attractor” [3] on which all turbulent motions concentrate in
a suitable phase space. This conjecture was fueled by
seminal studies on prototype flows such a Taylor-Couette
[4] or Rayleigh-Bénard convection [5,6], where it was
shown that the transition to turbulence actually follows the
traditional roads to deterministic chaos via the appearance
of two or three characteristic frequencies and either
quasiperiodicity with frequency locking, period doubling,
or intermittency [7]. However, it was soon realized that this
paradigm survives only during the transition to turbulence,
namely, for μc < μ ≪ μT. All attempts [8–10] to find the
strange attractor of a turbulence state failed. Does this mean
that we must abandon all hope to apply tools from
dynamical systems theory to turbulent flow?
We provide experimental evidence that the answer is

negative using a laboratory model experiment in highly
turbulent conditions. The key idea is that, even if a turbulent
flow is characterized by a large number of degrees of freedom,
some of them are less important than others and can be
lumped into a noise termwith a few relevant parameters. This
motivates the shift towards the notion of random dynamical
systems [11,12] and stochastic chaos [13].We are leftwith the
problem of the identification of the relevant variables which
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represent themain properties of the steady state, in a statistical
sense. Since the bifurcation in this system is connected with
symmetry breaking, it is natural to choose this parameter
so that it gives information about the symmetries of the
turbulent steady state, in analogy with the usual order
parameters in statistical physics. In our experiment, the
order parameter is a global quantity measuring the response
of the flow to an asymmetryof the fluxof angularmomentum.
As the asymmetry is varied, the turbulent state becomes
unsteady, and the formerly stable random attractor becomes
unstable, in a sequence reminiscent of the topology changes
of the Duffing attractor [14] with varying forcing amplitude.
We use the experimental setup as described in Ref. [15].

Turbulence is generated in a vertical cylinder of lengthH ¼
180 mm and radius R ¼ 100 mm filled with water and
stirred by two coaxial, counterrotating impellers providing
energy andmomentumflux at theupper and lower ends of the
cylinder. The impellers are made of disks of radius 0.925R,
fitted with eight curved blades. It is thus not equivalent to
drive the impellers in the scooping or unscooping direction.
In the first case, previous experiments at fixed impeller
frequencies evidenced the existence of two quasistationary
states, with different symmetries [16]. Such multistability
does not exist in the unscooping case. In the present Letter,
we focus on the case where the impellers are driven in the
scooping direction by two independent motors, operating in
conditions such that the torques C1 and C2 applied by the
flow onto the top and bottom impellers are constant. This
procedure guarantees a stationary flux of angularmomentum
at each impeller. To quantify the global response of the flow
to this forcing, we measure independently the rotating
frequency f1 and f2 of the two impellers. With a typical
mean applied torque C ¼ ðC1 þ C2Þ=2 ¼ 1.68 Nm, we
measure typical mean frequencies f ¼ ðf1 þ f2Þ=2 of
the order of 4 < fs1 < 4.5 Hz or 6.5 < fs2 < 7.5 Hz
depending on the mean flow geometry. Our experiment
being thermalized at a temperature T ¼ 21� 0.1 °C,
this corresponds to a typical Reynolds number Re ¼
2πfR2=ν ¼ 3 × 105, far from the estimated critical
Reynolds number for turbulence onset [17]: ReT ¼ 3500.
In what follows, we consider only data obtained for fixed

values of the torques Ci. This means that there is only one
free parameter characterizing the forcing. Because of the
symmetry of our experimental setup, statistical-mechanical
arguments [18] suggest the choice γðtÞ ¼ ½C1ðtÞ − C2ðtÞ�=
½C1ðtÞ þ C2ðtÞ� as the control parameter. From now on, the
parameter γ, corresponding to the μ parameter in our model,
is understood as a time-averaged value of γðtÞ as γðtÞ
experiences fluctuations in response to the turbulent flow.
The amplitude of the fluctuations—measured as the stan-
dard deviation of γðtÞ—is substantially independent of γ
[19]. We will see that the stochastic behavior of γðtÞ is the
key to the concept of random attractors. When γ ¼ 0, the
top and the bottom impeller are exchangeable, and we have
checked that the turbulent state statistically follows this

symmetry. As a result, the top and bottom rotating
frequencies are statistically equal: The variable θðtÞ ¼
½f1ðtÞ − f2ðtÞ�=½f1ðtÞ þ f2ðtÞ� fluctuates around zero and
characterizes the symmetries of the turbulent flow [15,23].
The time series and the power spectral density (PSD) of

the variable θðtÞ for six different values of the parameter γ
are plotted in Fig. 1 (see also [19] for an enlargement of the
spectral peaks). At γ ≈ 0, the time series has the signature of
decorrelated white noise, as evidenced by the flat spectrum.
At larger values of f, the turbulent spectrum is superposed
with characteristic frequencies fs2 ≃ 7 Hz, the average
impeller rotation frequency when the mean flow topology
is quasisymmetrical (weakly symmetry broken). A fre-
quency of the order of 2fs2 is also recognizable in the
spectrum which then saturates to white noise for frequencies
larger than fN ¼ 20 Hz, whereN stands for noise. For other
values of γ, the behavior is identical, with a shift of f
towards smaller and smaller values and the appearance of
another frequency fs1, of the order of 4 Hz, corresponding
to the typical frequency of a new quasistationary state, with
complete symmetry-broken mean flow topology (see the
insets in Fig. 2). We first eliminate the irrelevant small-scale
degrees of freedom at f ≥ fN by performing a moving
average of the time series over a time window of 30 Hz. The
corresponding time series is then analyzed using the local

(a)

(b)

(c)

FIG. 1. (a),(b) Time series of the global observable θ reflecting
the symmetries of the von Kármán turbulent flow experiment
with torque forcing at Re ¼ 3 × 105. The dynamics of θðtÞ for
γ ≃ 0 consists of fluctuations around an average value. Instead,
for higher values of jγj, an irregular switching between different
quasistationary states appears. (c) PSD of θðtÞ for different values
of γ. The black and gray arrows highlight the two spectral peaks
fs1 ≃ 4.5 Hz and fs2 ≃ 7 Hz corresponding to the typical mean
propeller frequency of the two quasistationary states.
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peak embedding procedure [24], by the extraction of the
maxima θm (or minima, since the results do not change
significantly) under the condition that subsequent maxima
cannot fall within 10 Hz (see Fig. 6 in Ref. [19] for the
portraits reconstructed with the delay methods [25]). Once

the series of partial maxima is obtained, the attractor is
visualized by plotting in an n-dimensional phase space, θm,
θmþ1, …, θmþn. The value of n, known as the embedding
dimension, plays a crucial role in the applications of the
dynamical systems theory to real data [26].
The embedding with n ¼ 3 for the experimental data

with γ ¼ 0.067 is represented in Fig. 2 (see Supplemental
video [19] for an animation of the dynamics). This attractor
features two quasistationary states s1 and s2. The transi-
tions from one state to another always follow one of the
three cycles highlighted by the arrows, which indicate the
only possible ways the system can switch.
The dynamics of θ shows a rich bifurcation diagramwhen

γ is varied. Some examples are shown in Figs. 3(a)–3(e). For
jγj ∼ 0, the attractor is a random point attractor [Fig. 3(c)].
This is the analog of the trivial zero-velocity state of
unforced viscous flow. For 0.02 < jγj < 0.04, a noisy
periodic motion first appears [Figs. 3(b) and 3(d)]. For
jγj > 0.06, this attractor bifurcates into a noisy chaotic
attractor [Figs. 3(a) and 3(e)]. We have further checked
that, when the constant torque forcing is applied on propeller
rotating in the unscooping direction, only one trivial
attractor is found, corresponding to the random point
attractor. This means that the route to chaos observed in
the scooping direction is a feature of the turbulent flow itself
and not due to the electronic control of the torque.
We now look for the minimal dynamical system model

capable of representing the dynamics of the experiment.
The dynamics of θðtÞ can be mimicked by an autonomous
oscillator at frequency f0, while the dynamics of γðtÞ
induced by the turbulent fluctuations is represented by a

FIG. 2. The von Kármán turbulent flow attractor reconstructed
for the experiment performed at γ ¼ 0.067. The attractor is
obtained by embedding the peaks θm extracted from the time
series θðtÞ in a three-dimensional space. One can identify two
quasistationary states (labeled as s1 and s2) corresponding to the
average velocity fields (dark red insets, arrows, and color scale
show, respectively, the in-plane and the orthogonal average
velocity and three cycles (highlighted by colored arrows). The
direction of the arrows indicates the only possible paths to switch
from one state to the other. See also Supplemental video [19].

(a) (c) (d) (e)(b)

(f) (h) (i) (j)(g)

FIG. 3. (a)–(e) The von Kármán turbulent flow attractors for five different γ values. From (c), the sequence shows how the attractor
bifurcates symmetrically into a noisy periodic motion (b),(d) and into a noisy chaotic attractor (a),(e). (f)–(j) The same bifurcation
sequence reproduced in the stochastic Duffing attractors for five different μ values.
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stochastic force. Moreover, the θ → −θ symmetry excludes
the presence of a quadratic nonlinearity. The minimal
model having such characteristics and capable of describ-
ing the sequence of bifurcations of the order parameter of
the von Kármán flow θðtÞ is the stochastic Duffing model, a
nonautonomous dynamical system with two variables x and
y ¼ _x with random forcing z obeying

dx ¼ ydt;

dy ¼ ð−ayþ x − x3 þ z sinωtÞdt;
dz ¼ −ϕðz − μÞdtþ σdWt; ð1Þ

where a ¼ 0.2, ϕ ¼ 0.9, σ ¼ 0.2, ω ¼ 1, and Wt is a
Wiener process [27]. These parameters are taken in the
chaotic regime of the Duffing equations to mimic the model
dynamics. In our model, x corresponds to the experimental θ
and ω corresponds to f0, while z corresponds to the
stochastic dynamics of γðtÞ modeled by the Ornstein-
Uhlenbeck process, the simplest stochastic model represent-
ing fluctuating dynamics of the control parameter: μ
corresponds to γ, i.e., the time average of γðtÞ, σ to
the amplitude of the fluctuation of γðtÞ, and ϕ−1 to the
characteristic time needed by the system to restore the
average γ [19]. We integrate numerically the stochastic
Duffing equations for different values of the control param-
eter μ with the code reported in Ref. [19]. Because of the
symmetry θ → −θ, we have two distinct Duffing attractors
for the positive and negative values of γ. By observing that
the quasistationary states of Eq. (1) are obtained for
xs ¼ �1, the two branches are recovered by shifting x to
xm ¼ sgnðμÞðx − 1Þ. In Figs. 3(f)–3(j), we show the sto-
chastic Duffing attractors in terms of ðxm; yÞ for different
values of μ. As in the turbulent experimental system, there is
a bifurcation from a random point attractor to random
periodic attractors and to random strange attractors.
To check more quantitatively the analogy between the

experimental system and the model, we have computed in
both cases the effective dimension with the method
proposed by Cao [28], comparing the experimental data
θðtÞ with a time series of xðtÞ of the same length, for which
we have repeated exactly the embedding procedure used for
the von Kármán experiments. We obtain the effective
dimension neff ≃ 10 from the experimental data and neff ≃
9 from the model. Moreover, the first Lyapunov exponent
λ1 from the data [Fig. 4(a)] and the first Lyapunov
exponents computed from the model [Fig. 4(b)] show a
qualitatively similar behavior as a function of the control
parameters γ and μ. The stochastic behavior, induced by the
fluctuation of the control parameter, is essential to get
the full bifurcation diagram: By changing μ in the sto-
chastic Duffing attractor, we observe smooth changes of
the Lyapunov exponents, compatible with those observed
in the experiments. In the deterministic case [19], the
Lyapunov exponents exhibit discontinuous jumps for

increasing jμj, so that the bifurcation diagram is incom-
patible with the one observed experimentally.
An essential feature of our reconstruction is the combi-

nation of tools from the classical dynamical system with
ideas borrowed from stochastic modeling, where the
influence of neglected degrees of freedom (here the small
scales) are described through a noise. The resulting model
is a dynamical system with a fluctuating control parameter.
Such fluctuations strongly modify the bifurcation diagram
of the original system, smoothing the variation of the
Lyapunov exponents, in agreement with experimental
findings [19]. As a result, the fluctuations of the order
parameter, the transition rates, and the bifurcation structure
respect the features experimentally observed. Therefore,
the random dynamical systems framework is more suitable
than the classical dynamical systems to describe our
turbulent data. The noise by itself is, however, not a
sufficient ingredient to reconstruct the full system dynam-
ics. Inspection of the turbulent attractor in Fig. 2 may
naively suggest that our system follows nothing else than a
generalized Langevin model, described by the stochastic
differential equations (SDEs), like in other turbulent
systems [29,30]. In this approach, the effective potential
may be found by inverting the probability distribution of
the global observable (as measured, e.g., in Ref. [15]) to
obtain the effective potential describing the fixed points.
The transition between quasistationary states is then cap-
tured by the addition of a noise term, representing
the interactions with smaller scales. This approach gives
the stationary states with fluctuations but hardly returns the
correct transition rates as shown by Ref. [31]. In fact, the
implicit assumption that the potential is one-dimensional
(e.g., by taking an overdamped limit) leaves only one
possible transition path between quasistationary states. The
turbulent attractor provided in Fig. 2 immediately suggests
that this description is false: There is more than one path for
the switch between s1 and s2, and the system dynamics

(a) (b)

FIG. 4. (a) First Lyapunov exponents λ1 measured for different
γ in the von Kármán turbulent flow (blue circles). For γ ≤ 0.02,
λ1 ≃ 0 corresponds to the experiments whose attractor is a
random point attractor. For larger jγj, λ1 > 0 and noisy attractors
are found. (b) First, second, and third Lyapunov exponents for
different μ measured in the stochastic Duffing equation with
σ ¼ 0.2. The behavior of λ1 is qualitatively similar to that of the
experiments. See also Figs. 13 and 14 in Ref. [19] for further
robustness tests.

PRL 119, 014502 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending
7 JULY 2017

014502-4



cannot be reduced to a single SDE. So, while a SDE is
superior to a classical deterministic model [30,32], it fails to
reproduce the exact dynamics in the phase space, as
described by Lyapunov exponents and the transition rates.
The random attractor model thus appears as the only
candidate able to describe both statistical and dynamical
features of our data.
We have provided experimental evidence that it is

possible to describe the large-scale motion of a fully
developed turbulent flow with a random dynamical system
model with few degrees of freedom, if an appropriate
observable reflecting the flow symmetry is selected. We
claim that the large embedding dimensions which pre-
vented the application of dynamical systems theory to
turbulence arise from small-scale disturbances which can
be modeled in terms of stochastic perturbations. This
general picture reconciles the Landau [2] and Ruelle-
Takens [3] descriptions of turbulence, the former being
valid at small scales, and the latter describing the large-
scale motions. Our findings may be extended to other
systems where chaos with large degrees of freedom plays a
role, thereby defining the procedure to find attractors in
geophysical fluid dynamics [8–10,33,34]. Like in our
turbulent experiments, general oceanic or atmospheric
circulations are characterized by general symmetry proper-
ties and small-scale dynamics that are possibly decorre-
lated. The main challenge is then to identify the relevant
global observable that reflects the system symmetry and
that can be used as an order parameter. Indeed, for some
well-chosen atmospheric circulation index (see, e.g., [35]),
the Duffing equation emerges as the minimal model for the
description of midlatitude circulation dynamics.
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