Molecular detection on a defective MoS$_2$ monolayer by simultaneous conductance and force simulations

Abstract : Based on simultaneous force and conductance simulations, a proof of concept for a potential method of molecular detection is presented. Using density functional theory calculations, a metallic tip has been approached to different small inorganic molecules such as CO, CO$_2$ , H$_2$O, NO, N$_2$ , or O$_2$. The molecules have been previously chemisorbed on a defect formed by two Mo atoms occupying a S divacancy on a MoS 2 monolayer where they are strongly bonded to the topmost substitutional molybdenum. At that site, the fixed molecules can be imaged by a conductive atomic-force-microscopy tip. Due to the differences in atomic composition and electronic configurations, each molecule yields specific conductance/force curves during the tip approach. A molecule-tip contact is established at the force minimum, followed by the formation of a characteristic plateau in the conductance in most of the cases. Focusing our attention on the position and values of such force minimum and conductance maximum, we can conclude that both characteristic properties can give a clear signature of each molecule, proposing a different method of detecting molecules adsorbed on highly reactive sites.
Type de document :
Article dans une revue
Physical Review B : Condensed matter and materials physics, American Physical Society, 2017, 95, pp.214105. 〈10.1103/PhysRevLett.106.176101〉
Liste complète des métadonnées

Littérature citée [46 références]  Voir  Masquer  Télécharger

https://hal-cea.archives-ouvertes.fr/cea-01567825
Contributeur : Dominique Girard <>
Soumis le : lundi 24 juillet 2017 - 15:27:15
Dernière modification le : jeudi 15 mars 2018 - 15:06:40

Fichier

PhysRevB.95.214105.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

Citation

Cesar Gonzalez Pascual, Y. J. Dappe. Molecular detection on a defective MoS$_2$ monolayer by simultaneous conductance and force simulations . Physical Review B : Condensed matter and materials physics, American Physical Society, 2017, 95, pp.214105. 〈10.1103/PhysRevLett.106.176101〉. 〈cea-01567825〉

Partager

Métriques

Consultations de la notice

164

Téléchargements de fichiers

87