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Evolution of Hall resistivity and spectral function with doping in the SU(2) theory of cuprates
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Recent transport experiments in the cuprate superconductors linked the opening of the pseudogap to a change in
electronic dispersion [S. Badoux et al., Nature (London) 531, 210 (2015)]. Transport measurements showed that
the carrier density sharply changes from x to 1 + x at the pseudogap critical doping, in accordance with the change
from Fermi arcs at low doping to a large hole Fermi surface at high doping. The SU(2) theory of cuprates shows
that short-range antiferromagnetic correlations cause the arising of both charge and superconducting orders,
which are related by an SU(2) symmetry. The fluctuations associated with this symmetry form a pseudogap
phase. Here we derive the renormalized electronic propagator under the SU(2) dome, and calculate the spectral
functions and transport quantities of the renormalized bands. We show that their evolution with doping matches
both spectral and transport measurements.
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I. INTRODUCTION

Two of the most striking features of cuprate supercon-
ductors are their enigmatic pseudogap phase [1,2] and how
they evolve from a Mott insulator to a correlated metal with
doping. Both features have been widely studied during the last
thirty years [3–12] and many scenarios have been proposed
to explain the physics of cuprate superconductors, based on
antiferromagnetic fluctuations [3,13,14], strong correlations
[5,15,16], loop currents [17,18], emergent symmetry models
[19,20], and particle-hole patches [21,22].

Recent transport experiments at high magnetic field in
YBa2Cu3Ox (YBCO) [23], La1.6−xNd0.4SrxCuO4 (Nd-LSCO)
[24], and La2−xSrxCuO4 (LSCO) [25] showed that these
two features are intrinsically linked. Hall coefficient and
resistivity measurements indeed yielded a sharp change of
the carrier density at the pseudogap critical doping x∗, from x

at low doping to 1 + x at high doping [23–25]. Resolving the
difference between this critical doping and others, such as the
one corresponding to the Fermi-surface reconstruction caused
by the arising of the charge density wave phase, was made
possible by the use of samples with adjacent dopings [23–26].

At low doping (x < x∗), this change in carrier density is
consistent with angle-resolved photoemission spectroscopy
(ARPES) experiments which show small Fermi arcs corre-
sponding to x carriers per unit cell [27]. At high doping
(x > x∗), the carrier density dependence is in agreement
with the quantum oscillation measurements which find a
large hole Fermi surface enclosing a 1 + x volume, in
agreement with band-structure calculations [28,29]. It is
also reminiscent of earlier transport measurements which
detected a peak in the Hall resistivity at low temperature
and optimal doping, then attributed to a change in the Fermi
surface [30,31].

Several models have been suggested to explain this change
in the carrier density. Some are based on strong coupling
and topological order [32], which give small Fermi pockets
at low temperature which enlarge when temperature rises.
The Fermi-surface reconstruction caused by charge order-
ing has also been considered [33,34]. Others are based
on long-range fluctuations, either superconducting [35,36],

antiferromagnetic [37–39], or related to a charge density wave
order [40] which yield a large Fermi surface gapped at low
temperature. Here we discuss a theory related to the latter
category, where the fluctuations ensue from the emergence of
an SU(2) symmetry between the charge and superconducting
operators [22], which both stem from antiferromagnetic
correlations.

Emerging symmetry theories have been the subject of
controversy, especially since it was argued that the emergence
of multiple orders at the pseudogap temperature T ∗ was due
to an “ineluctable complexity” [11]. However, the emergence
of an SU(2) symmetry at T ∗ does account for many features
of the phase diagram, in particular for the nematic and loop
current responses at T ∗ [41].

In this paper, we study electronic transport and spectral
functions in the SU(2) theory for cuprate superconductors.
We first lay out the main features of the SU(2) theory which
is based on short-range antiferromagnetic correlations. We
then derive a minimal model for this theory. We come back
to the full theory and derive the electron propagator in the
pseudogap phase, and finally use it to calculate conductivities,
Hall resistivity, and spectral functions. Our results agree with
both spectral [42] and transport [23] measurements.

II. SU(2) THEORY

A. Decoupling the short-range antiferromagnetic Hamiltonian

Here we outline the salient features of the SU(2) theory
of the cuprates, developed in [21,22]. We start by considering
a model of short-range antiferromagnetic correlations (t−J ),
widely studied in the context of high-temperature supercon-
ductivity [5]:

H =
∑

〈i,j〉,σ
tijψ

†
i,σψj,σ + 1

2

∑
〈i,j〉

Jij
�Si · �Sj , (1)

where i and j are lattice site indices, σ and σ ′ are spin indices,
ψ† is the electron creation operator, �Si = ∑

σ,σ ′ ψ
†
iσ �σσσ ′ψiσ ′ ,

and �σ is the vector of Pauli matrices. This model can be
decoupled in the charge and superconducting channels, which
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yields two corresponding order parameters. First, the charge
order parameter:

χk,k′ =
〈∑

σ

ψ
†
k,σψk′,σ

〉
, (2)

where k and k′ are combined momentum and frequency
indices. Here, k′ = k + Q0, where Q0 is the charge ordering
wave vector. The second-order parameter is the superconduct-
ing order parameter:

�k,k′ =
〈∑

σ

σψ
†
k,σψ

†
k′,−σ

〉
, (3)

where k′ = −k. We consider any charge order parameter
whose ordering wave vectors Q0 map hot spots, which are the
point of the Fermi surface separated by the antiferromagnetic
ordering wave vector (π,π ), onto one another.

It was shown that these various charge orders were
degenerate with the superconducting order at the hot spots in a
regime of intermediate coupling J . This intermediate coupling
corresponds to J larger than the energy of the bottom of the
conduction band in the antinodal region of the first Brillouin
zone but smaller than the total bandwidth. The antinodal region
is the region furthest away from the nodes of the d-wave
superconducting gap [22].

B. SU(2) fluctuations

We define the operators

η+ =
∑

k

ψ
†
k,↑ψ

†
−k+Q0,↓, (4)

η− =(η+)†, (5)

ηz =
∑

k

∑
k

ψ
†
k,↑ψk,↑ + ψ

†
−k+Q0,↓ψ−k+Q0,↓ − 1, (6)

which form an SU(2) algebra and are thus called SU(2)
operators [22]. It was shown that, for large values of J , the
SU(2) operators rotate � and χ on one another on a line
of the Brillouin zone which goes through the hot spots [22].
The two order parameters are therefore related by an exact
SU(2) symmetry [22]. This generalizes some earlier work
derived from the spin-fermion model and limited to the hot
spots [43]. The conservation of this SU(2) symmetry leads to

fluctuations, whose interaction with the fermions opens a gap
in the antinodal region of the Brillouin zone [22].

These fluctuations were also shown to raise the degeneracy
between the various charge orders, and to select a set
of q vectors, including q = 0 and vectors parallel to the
two reciprocal-lattice axes [21,22]. This makes this theory
intrinsically multi-q, i.e., with multiple charge ordering wave
vectors.

This SU(2) theory of the pseudogap has been shown to
elucidate many characteristics of the cuprate superconductors,
including Raman scattering [44], fixed-doping ARPES [45],
and inelastic neutron-scattering [46] responses, as well as the
strange metal behavior [22]. Moreover, the recent measure-
ment of pairing fluctuations in the pseudogap region [47] is
in line with the presence of SU(2) fluctuations [41]. Note that
this theory is only based on the presence of antiferromagnetic
correlations in the system. In particular, it does not require the
presence of any long-range antiferromagnetic fluctuations, nor
the existence of an antiferromagnetic quantum critical point.

The composite order parameter corresponding to this SU(2)
order is a 2 × 2 matrix:

b

(
χ �

−�† χ †

)
, where |χ |2 + |�|2 = 1,

with χ the charge order parameter, � the superconducting
order parameter, and b the SU(2) phase [22]. Note that
this order parameter is intrinsically not Abelian. It is SU(2)
symmetric, meaning that there exists a set of operators forming
an SU(2) algebra under which this composite order parameter
is invariant [22].

III. MINIMAL MODEL

Here we consider a simpler version of the SU(2) theory,
which was studied previously in the context of ARPES [44],
Raman [45], and inelastic neutron-scattering responses [46].

The minimal model for the SU(2) theory is obtained by
performing a mean-field decoupling of the t−J model in two
channels [44,46]. The first channel is, like for the general
case, the d-wave superconducting channel �k. The second
channel is the resonant excitonic state (RES) channel, which
is a specific multi-q charge order. It corresponds to χk with a
k-dependent ordering wave vector 2pF (k). It maps one side of
the Fermi surface on the other [44,46]. More precisely, for k
on the Fermi surface, 2pF (k) = −k. The RES corresponds to
patches of charge order arranged in real space [21,44,46].

We start from the t−J model [Eq. (1)] and Fourier
transform the fermionic operators:

H =
∑
k,σ

ξkψ
†
k,σ ψk,σ + 1

2

∑
k,k′,q

∑
α,β,γ,δ

Jqψ
†
k,α �σαβψk+q,β · ψ

†
k′+q′,γ �σγ δψk′,δ, (7)

where α, β, γ , and δ are spin indices, and ξk is the free-electron dispersion. The mean-field decoupling of the Hamiltonian (7)
in the superconducting and RES channels yields the effective Hamiltonian:

Heff = −
∑
k,σ


†
k,σG−1

mink,σ , (8)
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where 
†
kσ is the four-states spinor (ψ†

k,σ ,ψ−k−2pF (−k),−σ ,ψ
†
k−2pF (k)σ ,ψ−k,−σ ) and

G−1
min =

⎛
⎜⎜⎜⎜⎝

ω − ξk 0 χk �k

0 ω + ξ−k−2pF (−k) �
†
k−2pF (k) −χk

χ
†
k �k−2pF (k) ω − ξk−2pF (k) 0

�
†
k −χ

†
k 0 ω + ξ−k

⎞
⎟⎟⎟⎟⎠. (9)

The propagator of the minimal model can be obtained by
inverting the matrix (9) as done in [45,46]. Close to the Fermi
surface, one can approximate ξk−2pF (k) by −ξk and �

†
k−2pF (k)

by �
†
k [45,46]. The renormalized propagator of the minimal

model then writes

Gmin11 (k,ω) = 1

ω − ξk − |χk|2+|�k|2
ω+ξk

, (10)

where |χk|2 + |�k|2 is the SU(2) order parameter which is
maximal when the SU(2) symmetry is conserved and 11
indicates the first-line first-column coefficient of the inverse
matrix.

This minimal model makes clear that the gapping of
the antinodal part of the Brillouin zone is due to the
formation of fluctuating pairs: particle-particle pairs for the
superconducting order and particle-hole pairs for the charge
order, and the fluctuation between these two types of pairs.
Antiferromagnetic correlations therefore cause the arising of
fluctuating pairs which “schizophrenically” fluctuate between
the particle-particle and the particle-hole channels.

IV. DERIVATION OF THE SELF-ENERGY

We now come back to the full SU(2) theory outlined in
Sec. II, and derive the renormalized propagator in this case.
Expanding the action of the model of short-range antiferro-
magnetic correlations linearly for small SU(2) fluctuations,
one obtains an effective nonlinear σ model [22]. The effective
action for the electrons is obtained by integrating out the SU(2)
fluctuations in this model [22]:

Sfin = − 1

2
Tr

∑
k,k′,q,q ′,σ,σ ′

σσ ′〈�†
kq�k′q ′ 〉Q

× ψ
†
k+q,σ ψ

†
−k+q,σ̄ ψ−k′+q ′,σ̄ ′ψk′+q ′,σ ′ , (11)

where k, k′, q, and q ′ are combined momentum and frequency
indices, σ and σ ′ are spin indices, and ψ† is the electron
creation operator. One can simplify [22]:

〈�†
kq�k′q ′ 〉Q = δq,q′πs

kk′q, (12)

where πs
kk′q is the SU(2) fluctuations propagator:

πs
kk′q = M0,kM0,k′

π0

J0ε2 + J1(v · q)2 − a0
, (13)

where q = (q,ε), π0, J0, and J1 are coefficients, v is the Fermi
velocity, a0 is a mass term, and M0,k is the SU(2) form factor,
which depends on the position in the Brillouin zone. M0,k = 1
when the SU(2) symmetry is preserved, and is zero when it
is broken. a0 < 0 when a magnetic field is applied. Inputting

this in Eq. (11) gives the expression for the self energy:

−�(k) = 1

2

∑
q,σ

πs
kkqG

0
−k+q,σ̄ , (14)

where G0 is the free-electron propagator. This self-energy
corresponds to the diagram in Fig. 1. Approximating the sum
yields (see Supplemental Material for details [48])

�(k,ω) = B
M2

0,k

iω + ξk
, (15)

where B is a parameter, k = (k,ω) and ξk is the free-electron
dispersion. The renormalized electronic propagator therefore
is

G(k,ω) = 1

ω − ξk − B
M2

0,k

ω+ξk

. (16)

We therefore obtain the same propagator as in the minimal
model, except that the SU(2) order parameter is replaced by a
form factor inherited from the full SU(2) theory, and that we
did not need to make any approximation on the dispersion.

V. SPECTRAL AND TRANSPORT RESPONSES

Separating the renormalized propagator obtained with the
full SU(2) theory [Eq. (16)] in simple elements gives us the
expressions for the renormalized bands:

E±(k) = ±
√

ξ (k,x)2 + BM2
0,k, (17)

FIG. 1. Top: evolution of the spectral functions at zero fre-
quency with doping. Note that because the renormalized bands are
symmetrical with respect to zero energy, both spectral functions
are equal at zero frequency. We therefore only plot one of them.
Bottom: self-energy diagram for the renormalization of the fermionic
propagator. The straight lines are bare electron lines, while the wiggly
line is the SU(2) fluctuations line.
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and corresponding spectral functions:

A±(k,ω) = 1

π

W±(k)�±(k)

[ω − E±(k,x)]2 + �±(k)2
, (18)

where the spectral weights are given by

W±(k) = 1

2

⎛
⎝1 ± ξ (k,x)√

ξ (k,x)2 + BM2
0,k

⎞
⎠ (19)

and �± is the scattering rate of each renormalized band. We
follow previous works [38,49,50] and neglect the scattering
between the two renormalized bands. The longitudinal and
transverse conductivities are given by [49]

σ±
xx = −2πe2

V N

∑
k

(v±
x (k))2

∫
dω

∂f (ω)

∂ω
A±(k,ω)2 (20)

σ±
xy =4π2e3

3V N

∑
k

v±
x (k)

(
v±

x (k)
∂v±

y (k)

∂ky

− v±
y (k)

∂v±
y (k)

∂kx

)

×
∫

dω
∂f (ω)

∂ω
A±(k,ω)3. (21)

The integral over frequency can be simplified using the
standard approximation [51]:∫ ∞

−∞
dω

(
�±(k)

[ω − E±(k)]2 + �±(k)2

)2

= π

2

1

�±(k)
, (22)

which gives

σ±
xx = e2

V N

∑
k

(v±
x (k))2 W±(k)2

�±(k)

βeβE±(k)(
eβE±(k) + 1

)2 . (23)

We generalize this approach to the cubic case and obtain

σ±
xy = − e3

2V N

∑
k

v±
x (k)

(
v±

x (k)
∂v±

y (k)

∂ky

− v±
y (k)

∂v±
y (k)

∂kx

)

× W±(k)3

�±(k)2

βeβE±(k)

(eβE±(k) + 1)2
. (24)

These expressions allow us to calculate the Hall resistance
[49]:

RH = σ+
xy + σ−

xy

(σ+
xx + σ−

xx)2
. (25)

The magnitude of the gap depends on the conservation of
the SU(2) symmetry. Indeed, when the SU(2) symmetry is
conserved, the SU(2) fluctuations are maximal, and therefore
the gap is fully open. When the SU(2) symmetry is sufficiently
broken, there are no SU(2) fluctuations and the gap is closed.
In order to quantify how much the SU(2) symmetry is broken,
we define �ξk = 1

2 (ξk + ξk+Q) which we name the SU(2)
symmetry-breaking dispersion, or SU(2) line. If �ξk is zero,
the SU(2) symmetry is conserved, hence we must have M2

0 = 1
to open the gap. Conversely, if the SU(2) symmetry is broken,
�ξk is large, and we must have M2

0 = 0. In order to interpolate
between these two points, we parametrize the symmetry

 0 π
kx

 0

π

k y

0.10 0.14 0.17 0.19

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0  0.2 0.4 0.6 0.8  1

B
 M

0,
k2

0.5*|cos(kx)-cos(ky)|

FIG. 2. Top: evolution of the gap BM2
0,k with doping in a quarter

of the Brillouin zone. The color blue is for zero, and the black line
represents the Fermi surface. Bottom: gap on the Fermi surface with
respect to the d-wave factor. A pure d-wave gap would be strictly
linear.

breaking coefficient in the free energy using a smooth step
function:

M2
0 = 1

e30∗(�ξk/�SU2)2−0.02 + 1
, (26)

where �SU2 is the magnitude of the SU(2) gap. The SU(2) wave
vector Q0 is chosen as the vector between the two closest hot
spots, following previous studies [22]. We set M0 to zero when
smaller than one-hundredth. The �SU2 parameter represents
the magnitude of the pseudogap order parameter in the SU(2)
theory and was parametrized by

�SU2 =
(

1

e(x−0.175)×170 + 1
− 0.018

)
× 0.58. (27)

For consistency we also set B = �SU2. We use �± = 0.01 ×
t0, and set x∗ = 0.2. We use the electronic dispersion used
in a previous work [38], and shown to properly replicate the
doping dependence of the Hall number for x > x∗.

VI. RESULTS

We calculated the magnitude of the gap B × M2
0 over the

Brillouin zone and on the Fermi surface (Fig. 2). The gap opens
along the SU(2) line, as found previously [22]. The SU(2) line
crosses the Fermi surface at the hot spots, consequently of our
choice of ordering wave vector. The gap opens in the antinodal
zone and is closed in the nodal zone. It gets both thinner and
smaller in magnitude with rising doping and finally vanishes
at the critical doping. This can be compared with ARPES data
which showed that the pseudogap was closed in the nodal
zone [42]. Our data fit qualitatively these experimental results,
unlike methods based on a pure d-wave gap (i.e., a gap linear
in the d-wave factor).

The spectral functions of the two renormalized bands at
zero frequency were calculated using Eq. (18) (Fig. 1). The
dispersion in the denominator of the self-energy [Eq. (14)],
which corresponds to the dispersion of the SU(2) fluctuations
bosonic mode, is the opposite of the bare electronic dispersion.
The self-energy therefore diverges on the Fermi surface. This
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FIG. 3. Hall resistance in volume units with respect to tempera-
ture in K per units of t0, for a range of hole dopings.

also means that the renormalized bands are equal to each
other up to a sign, and therefore the spectral functions at zero
frequency are equal. Consequently, we only plot one of them.
The absence of gap in the nodal region causes the formation of
a Fermi arc around the nodal point. This Fermi arc gets larger
with larger doping, until it forms the whole Fermi surface at
the critical doping x∗. The gap remains open at the hot spots
for x < x∗, and closes near the Brillouin-zone edge slightly
before (see the Supplemental Material [48]).

Using Eqs. (23) and (24), we calculated the evolution of the
Hall resistivity with temperature (Fig. 3). For completeness,
we also plotted the evolution of the longitudinal and transverse
conductivities (see the Supplemental Material [48]). For each
doping, the Hall resistivity rises with decreasing temperature
and saturates at low temperature. This rise is lower for higher
dopings, and almost absent close to the critical doping. Note
that the calculation does not reach absolute zero. This is due to
the exponentials in the expressions for conductivities growing
larger than the computational maximum. The zero-temperature
Hall number nH = V/eRH (Fig. 4) sharply changes from
x to 1 + x close to the critical doping, in agreement with
experimental measurements on YBCO [23] and Nd-LSCO
[24]. The 1 + x evolution of nH at high doping corresponds to
the standard carrier density for a hole pocket, and is similar to
the one obtained in other theories [38].

We compared these results to using a pure d-wave gap such
as the one used in previous studies [38]. Naturally, because
the dispersion of the bosonic mode is equal to minus the
electronic dispersion, the gap opens everywhere but at the

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6

 0  0.05  0.1  0.15  0.2  0.25  0.3

nH = x

nH = 1+x

nH = x

nH = 1+x

n H

x

FIG. 4. Hall number with respect to doping (blue). The experi-
mental values from [23] (orange) and the low-doping and high-doping
asymptotes (black) are also plotted for reference. Note that x∗ = 0.2.

nodal points. Therefore the Hall resistance diverges at low
temperature (see the Supplemental Material [48]). However
one can measure the evolution of finite temperature values of
the Hall resistance with doping. Interestingly, this displays a
transition from x to 1 + x, in fine agreement with experiments
(see the Supplemental Material [48]).

VII. DISCUSSION

Our calculation of the evolution of the gap on the Fermi
surface with doping closely resembles ARPES data [42]
(Fig. 1). Indeed, measurement of the photoemission gap above
Tc found that a d-wave dependence could not describe what
was seen experimentally: the gap is measured to be zero for a
segment of the d-wave factor which grows with doping, unlike
a d-wave gap which would be linear here. Experimental data
then find a close-to-linear increase in the gap, followed by a
saturation at intermediate dopings [42]. Our data satisfactorily
fit experimental data at low and intermediate doping. Indeed
the saturation is not observed in the sample with the lowest
doping, but data points for a d-wave factor larger than 0.8 have
larger error bars and could fit a saturation, knowing that this is
precisely the d-wave factor where we find a saturation. At high
doping however, we find a segment for which the gap is zero
which is much larger that in experiments. But this part of the
experimental data is more noisy and closer to zero which makes
us think that this could be due to experimental difficulties.
Indeed, this observation is in contradiction with the length of
the Fermi arc measured with ARPES, which can be seen to be
large in other studies when plotted on the Brillouin zone [27],
while the pseudogap is finite for a d-wave factor as low as 0.5.
Finally, the size of the gap at its maximum was measured to be
about 50 meV at low doping, 40 meV at intermediate doping,
and 20 meV a high doping [42]. Our calculations reproduce
this trend, although the sharp drop of this maximum at high
doping has yet to be compared with experiments very close to
the critical doping. We therefore conclude that our calculations
are in agreement with d-wave-factor resolved ARPES data
[42].

Our calculations therefore yield the arising of Fermi arcs,
not Fermi pockets, in the pseudogap phase. This seems to be in
contradiction with the Luttinger sum rule, which states that the
volume of the Fermi surface is equal to the number of carriers.
Indeed, here in the pseudogap phase this volume is ill defined,
since parts of its boundary have vanished. However, in our case,
it is the fluctuations between superconductivity and charge
order which gap the Fermi surface. We extrapolate this theory
at zero temperature, in order to replicate the experimental
procedure. But the pseudogap is not a zero-temperature ground
state in this theory, and therefore there is no breaking of the
Luttinger theorem. At zero temperature, one would obtain
either superconductivity or charge order, possibly with defects
such as superconducting filaments in the charge ordered phase
[41,47]. The fact that we obtain arcs and not pockets is
similar to the case of a multi-q charge order, such as the one
considered in the minimal model [44–46], or to the case of a
superconducting gap. Indeed, there, the perfect nesting of the
Fermi surface means that there is no rise of electron or hole
pockets, nor any reconfiguration of the Fermi surface. Instead,
the Fermi surface is gapped in the antinodal region.
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The Hall number is a measurement of the number of
carriers, and accordingly we find that the length of the Fermi
arcs has a similar evolution to it. This also means that in order
for the Hall number to reach the 1 + x line, the gap has to
close near the edge of the Brillouin zone, in order to allow
the formation of a second small Fermi arc per quarter of the
Brillouin zone, close to the zone edge, separated from the first
one by the two hot spots. Here, this extra Fermi arc appears
at dopings higher than 0.19 (see the Supplemental Material
[48]).

The evolution of the Hall number depends on the
parametrization of the gap, as in any phenomenological
model. The specific choices we made here correspond to
the measurements on YBCO [23]. However the fact that this
system goes from small Fermi arcs to a large hole pocket does
not rely on fitting. Only the width of the transition can be
tuned. We did not use, unlike many other parametrizations of
the pseudogap, a linear dependence with respect to doping
[38]. This linear dependence does not fit experimental data,
even in the studies that use it. Indeed, the Yang-Rice-Zhang
(YRZ) model with the published linear pseudogap gives nH

under the x line for x < 0.10 (see the Supplemental Material
[48]) [38]. This does not challenge the ability of the YRZ
model to replicate experimental data, but only stresses that,
there too, a linear dependence of the pseudogap in doping
is inadequate. Note that the evolution of nH at high doping,
which follows the 1 + x line, is the same as the one in the
YRZ model since at that point the gap is entirely closed and
therefore the theories no longer differ.

The fact that the Hall number goes as x at low doping is a
matter of fitting in both the YRZ model and the current study.
However it is also a physical consequence of the fact that both
models are based on antiferromagnetic correlations. Doping
such a system will cause the arising of Fermi pockets of size
x, which will then either grow with doping in the case of the
YRZ model, or give birth to arcs in the case of the SU(2) theory,
at the doping at which the SU(2) fluctuations start dominating
the antiferromagnetic fluctuations.

The choice of ordering vector Q0 at the hot spots has been
made according to previous studies [22]. We did however
replicate the calculation for two other Q0 ordering vectors,
one taken at the Brillouin-zone edge, and one linking two
diagonally placed hot spots. The first choice does not impact

the calculations much, but the second produces an early
transition of nH , which reaches the 1 + x line at x = 0.19
(see the Supplemental Material [48]). What is crucial for the
transition of the Hall number is therefore not the precise choice
of Q0, but that the antinodal region is implicated.

VIII. CONCLUSION

Here we derived the renormalized electronic propagator in
the pseudogap phase, in the framework of the SU(2) theory.
Comparing it with the one obtained for a minimal model of
fluctuating pairs tells us that such a simple theory is compatible
with experimental observations. This is true as long as the
pairing energy comes from short-range antiferromagnetic
correlations, which are key to make the link with the low
doping part of the phase diagram. Finally, the choice of charge
ordering wave vector does not have an impact on the result, as
long as it involves the antinodal region.

It is striking that our results fit experimental results corre-
sponding both to transport and spectral probes closely. Indeed
they agree to a remarkable extent with two types of ARPES
measurements: over the Brillouin zone and resolved with
respect to the d-wave factor (Figs. 1 and 2, respectively). They
also quantitatively reproduce the evolution of the Hall number
with doping (Fig. 4). These results are directly inferred from
the SU(2) theory of superconductors, which is an effective
theory derived directly from a model of antiferromagnetism
with short-range coupling. Moreover, the SU(2) theory has
been shown to agree well with other experimental signatures,
such as details in energy-resolved ARPES spectra [45] and
in Raman scattering [44] and neutron [46] experiments. The
agreement with such a wide range of experiments is indeed
encouraging.
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