J. Cabana, L. Monconduit, D. Larcher, and M. R. Palacín, Beyond Intercalation-Based Li-Ion Batteries: The State of the Art and Challenges of Electrode Materials Reacting Through Conversion Reactions, Advanced Materials, vol.127, issue.8, pp.170-92, 2010.
DOI : 10.1002/adma.201000717

URL : https://hal.archives-ouvertes.fr/hal-00528312

M. V. Reddy, T. Yu, C. H. Sow, Z. X. Shen, C. T. Lim et al., ??-Fe2O3 Nanoflakes as an Anode Material for Li-Ion Batteries, Advanced Functional Materials, vol.50, issue.15, pp.2792-2799, 2007.
DOI : 10.1002/adfm.200601186

M. Chen, X. Xia, J. Yin, and Q. Chen, Construction of Co3O4 nanotubes as high-performance anode material for lithium ion batteries, Electrochimica Acta, vol.160, pp.15-21, 2015.
DOI : 10.1016/j.electacta.2015.02.055

C. Yuan, H. B. Wu, Y. Xie, and X. W. Lou, Mixed Transition-Metal Oxides: Design, Synthesis, and Energy-Related Applications, Angewandte Chemie International Edition, vol.22, issue.98, pp.1488-1504, 2014.
DOI : 10.1002/adfm.201200766

X. Guo, X. Lu, X. Fang, Y. Mao, Z. Wang et al., Lithium storage in hollow spherical ZnFe2O4 as anode materials for lithium ion batteries, Electrochemistry Communications, vol.12, issue.6, pp.847-850, 2010.
DOI : 10.1016/j.elecom.2010.04.003

H. Xia, Y. Qian, Y. Fu, and X. Wang, Graphene anchored with ZnFe2O4 nanoparticles as a high-capacity anode material for lithium-ion batteries, Solid State Sciences, vol.17, pp.67-71, 2013.
DOI : 10.1016/j.solidstatesciences.2012.12.001

L. Yao, X. Hou, S. Hu, J. Wang, M. Li et al., Green synthesis of mesoporous ZnFe2O4/C composite microspheres as superior anode materials for lithium-ion batteries, Journal of Power Sources, vol.258, pp.305-313, 2014.
DOI : 10.1016/j.jpowsour.2014.02.055

X. Hou, X. Wang, L. Yao, S. Hu, Y. Wu et al., with inflorescence spicate architecture as anode materials for lithium-ion batteries with outstanding performance, New J. Chem., vol.13, issue.3, pp.1943-1952, 2015.
DOI : 10.1021/cm000600x

Z. Xing, Z. Ju, J. Yang, H. Xu, and Y. Qian, One-step hydrothermal synthesis of ZnFe2O4 nano-octahedrons as a high capacity anode material for Li-ion batteries, Nano Research, vol.5, issue.7, pp.477-485, 2012.
DOI : 10.1021/nn200493r

Y. Sharma, N. Sharma, G. V. Rao, and B. V. Chowdari, Li-storage and cyclability of urea combustion derived ZnFe2O4 as anode for Li-ion batteries, Electrochimica Acta, vol.53, issue.5, pp.2380-2385, 2008.
DOI : 10.1016/j.electacta.2007.09.059

X. Wang, Y. Xiao, C. Hu, and M. Cao, A dual strategy for improving lithium storage performance, a case of Fe2O3, Materials Research Bulletin, vol.59, pp.162-169, 2014.
DOI : 10.1016/j.materresbull.2014.07.008

Y. Li, J. Zhao, J. Jiang, and J. Han, Phase transformation and the mechanism of combustion synthesis of ZnFe2O4 ferrite powders, Materials Research Bulletin, vol.38, issue.8, pp.1393-1399, 2003.
DOI : 10.1016/S0025-5408(03)00152-1

T. González-carreño, M. P. Morales, M. Gracia, and C. J. Serna, Preparation of uniform ??-Fe2O3 particles with nanometer size by spray pyrolysis, Materials Letters, vol.18, issue.3, pp.151-155, 1993.
DOI : 10.1016/0167-577X(93)90116-F

E. Peled and J. , The Electrochemical Behavior of Alkali and Alkaline Earth Metals in Nonaqueous Battery Systems???The Solid Electrolyte Interphase Model, Journal of The Electrochemical Society, vol.126, issue.12, pp.2047-2051, 1979.
DOI : 10.1149/1.2128859

G. Zhou, D. W. Wang, F. Li, L. Zhang, N. Li et al., Anode Material with Improved Reversible Capacity and Cyclic Stability for Lithium Ion Batteries, Chemistry of Materials, vol.22, issue.18, pp.5306-5313, 2010.
DOI : 10.1021/cm101532x

J. S. Do and C. H. Weng, Preparation and characterization of CoO used as anodic material of lithium battery, Journal of Power Sources, vol.146, issue.1-2, pp.482-486, 2005.
DOI : 10.1016/j.jpowsour.2005.03.095

S. J. Rezvani, R. Gunnella, A. Witkowska, F. Mueller, M. Pasqualini et al., Is the Solid Electrolyte Interphase an Extra-Charge Reservoir in Li-Ion Batteries?, ACS Applied Materials & Interfaces, vol.9, issue.5, pp.4570-4576, 2017.
DOI : 10.1021/acsami.6b12408

Y. Ding, Y. Yang, and H. Shao, High capacity ZnFe2O4 anode material for lithium ion batteries, Electrochimica Acta, vol.56, issue.25, pp.9433-9438, 2011.
DOI : 10.1016/j.electacta.2011.08.031

N. Wang, H. Xu, L. Chen, X. Gu, J. Yang et al., A general approach for MFe 2 O 4 (M??=??Zn, Co, Ni) nanorods and their high performance as anode materials for lithium ion batteries, Journal of Power Sources, vol.247, pp.163-169, 2014.
DOI : 10.1016/j.jpowsour.2013.08.109

D. Zhou, H. Jia, J. Rana, T. Placke, T. Scherb et al., Local structural changes of nano-crystalline ZnFe 2 O 4 during lithiation and de-lithiation studied by X-ray absorption spectroscopy, Electrochimica Acta, vol.246, pp.699-706, 2017.
DOI : 10.1016/j.electacta.2017.06.098

. Phd, C. S. Marino, L. Laruelle, J. Dupont, and . Tarascon, Optimisation de nouvelles électrodes négatives énergétiques pour batteries lithium-ion : caractérisation des interfaces électrode/électrolyte, pp.895-904, 2003.