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Abstract

During stellar evolution, especially in the PMS phase, stellar structure and rotation evolve signif-
icantly causing major changes in the dynamics and global flows of the star. We wish to assess the
consequences of these changes on stellar dynamo, internal magnetic field topology and activity level.
To do so, we have performed a series of 3D HD and MHD simulations with the ASH code. We choose
five different models characterized by the radius of their radiative zone following an evolutionary track
computed by a 1D stellar evolution code. These models characterized stellar evolution from 1 Myr to
50 Myr. By introducing a seed magnetic field in the fully convective model and spreading its evolved
state through all four remaining cases, we observe systematic variations in the dynamical properties
and magnetic field amplitude and topology of the models. The five MHD simulations develop strong
dynamo field that can reach equipartition state between the kinetic and magnetic energies and even
super-equipartition levels in the faster rotating cases. We find that the magnetic field amplitude
increases as it evolves toward the ZAMS. Moreover the magnetic field topology becomes more com-
plex, with a decreasing axisymmetric component and a non-axisymmetric one becoming predominant.
The dipolar components decrease as the rotation rate and the size of the radiative core increase.
The magnetic fields possess a mixed poloidal-toroidal topology with no obvious dominant component.
Moreover the relaxation of the vestige dynamo magnetic field within the radiative core is found to
satisfy MHD stability criteria. Hence it does not experience a global reconfiguration but slowly relaxes
by retaining its mixed stable poloidal-toroidal topology.

Subject headings: Convection, Hydrodynamics, Magnetohydrodynamics, Stars: interiors, Sun: inte-
rior, dynamo, stellar magnetism

1. STELLAR EVOLUTION AND MAGNETISM

Stellar rotation is known to significantly change over
the course of stellar evolution (Gallet & Bouvier 2013).
Once the star is formed, i.e. at the end of the protostel-
lar phase, it enters the pre-main-sequence phase (PMS).
This stage is characterized by a strong contraction of the
star under the action of gravitation and the absence of
long-term thermonuclear reactions. When H-burning oc-
curs at the center of the star and stellar contraction stops,
the young star arrives on the main sequence (MS) where
it will spent the majority of its lifetime. The very begin-
ning of this stage, when the H-burning starts, is called
the zero-age-main-sequence (ZAMS). This stage also cor-
responds to a rapid overall increase of the rotation of the
star.

At the very beginning of the PMS phase, stellar rota-
tion remains constant since the star is in a disk-locking
phase until about 3 to 10 Myr, when it decouples from
the vanishing disk. Then as the star contracts under
the influence of gravitation, stellar rotation increases as
a consequence of angular momentum conservation until
it reaches the ZAMS. Later, on the main sequence, stel-
lar rotation decreases as contraction stops and magnetic
winds start braking the star. This is not the only drastic
evolution that young stars experience during this phase
of stellar evolution as their luminosity also varies by a
large factor. The internal structure is too strongly im-
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pacted as the star evolves along the PMS phase. Indeed
starting from a fully convective state, their radiative zone
grows continuously due to the ignition of thermonuclear
reactions in their deep core, such as occupying most of
their interior upon their arrival on the ZAMS. These ma-
jor changes impact the star’s properties, especially their
internal rotation and magnetic field.

Stellar rotation rate, internal rotation and magnetic
field are strongly linked through complex physical pro-
cesses. At the very beginning of stellar evolution, stars
are meant to rotate quite fast since they contract and
accrete angular momentum from the disk. However ob-
servations led for instance by Bouvier et al. (1986, 2014)
show that they only rotate at one tenth of their break-
up velocity. Hence some physical process prevent stars
from spinning up at the very beginning of their PMS evo-
lution. Magnetic field is an likely candidate to explain
this phenomena as it controls the interaction between the
star and its disk. Even after the disk-locking phase, mag-
netic field has a strong link with rotation through wind-
braking and core-envelop coupling. Magnetic field can
also possibly modify the transport of angular momen-
tum in stellar interiors through Maxwell stresses. For
instance, it has been invoked to explain the flat rota-
tion profile in the radiative interior of the Sun, along
with other processes such as internal waves (Charbon-
nel & Talon 2005; Eggenberger et al. 2005). It is quite
clear that a feedback loop between rotation and mag-
netic field must exist. On one hand the rotation impacts
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the magnetic field through dynamo process, and espe-
cially through the shearing of magnetic field lines by the
differential rotation of the convective envelop (e.g. the
Ω-effect). On the other hand, magnetic field topology
and amplitude impact braking by the wind. Evidence
of such an influence was studied for instance by (Piz-
zolato et al. 2003; Wright et al. 2011; Gondoin 2012;
Reiners et al. 2014; Matt et al. 2015; Blackman & Owen
2016). Such analysis showed a correlation between coro-
nal X-ray emission and stellar rotation in late-type main-
sequence stars, revealing the existence of two regimes. In
the first one, at Rossby number greater than 0.1-0.3, the
X-ray emission is well correlated with the rotation pe-
riod whereas in the second one, at low Rossby number, a
constant saturated X-ray to bolometric luminosity ratio
is attained. This implies that either the surface field or
the stellar dynamo, or both, saturates at fast rotation
rates, i.e. at low Rossby numbers.

Stellar magnetic field and internal rotation can also be
influenced by internal structure changes. The correlation
between the existence of the radiative core and X-ray
emission was studied by Rebull et al. (2006). The results
showed that stars with a radiative core have LX/Lbol val-
ues that are systematically lower by a factor of 10 than
those found for fully convective stars of similar mass. The
flux reduction from fully convective stars to stars with
a radiative core is likely related to structural changes
that influence the efficiency of magnetic field generation
and thus the amplitude and topology of magnetic field.
A correlation between the growth of the radiative core
and the reduction of the number of periodically variable
T Tauri stars have been established by Saunders et al.
(2009). Several surface magnetic maps of accreting T
Tauri stars have been published (e.g. Donati et al. 2011,
2012; Hussain et al. 2009). These maps were used by
Gregory et al. (2012) to study the influence on stellar
magnetic fields of the apparition and growth of a radia-
tive core. It has been found that for stars with a massive
radiative core, e.g. Mcore > 0.4 Mstar, the internal mag-
netic field is complex, non axisymmetric and has weak
dipole components. This behavior changes when the ra-
diative core is smaller, e.g. 0 < Mcore < 0.4 Mstar, the
field is less complex and more axisymmetric whereas the
dipole component is still weak compared to higher or-
der components. As young solar-like stars evolve along
the PMS phase, the internal structure changes from fully
convective stars to stars with a radiative core, one can
expect similarities with low-mass stars behavior, in par-
ticular near the M3-M4 transition. Near the fully con-
vective limit, most of the stars have axisymmetric fields
with strong dipole components whereas in fully convec-
tive stars, the behavior of stellar magnetic fields might
even be bistable with a mixture of different geometries
and amplitudes (Morin et al. 2010). Observations have
also shown that solar-like stars possess a magnetic field
which is predominantly toroidal for fast rotators (Petit
et al. 2008; See et al. 2016) and that a subset may even
possess a magnetic cycle. To be more precise, some corre-
lations between the period of these cycles and the stellar
rotation were advocated during the last decades (Noyes
et al. 1984; Soon et al. 1993; Baliunas et al. 1996; Saar
& Brandenburg 1999; Saar 2001). These analysis show
that Pcyc increases as Prot increases since they found that
Pcyc ∝ Pnrot, where n varies depending on the studies but

remains positive. However these studies are now recon-
sidered since they are based on observations of the chro-
mospheric cycle that may differ from the magnetic one
See et al. (2016), as it is the case in the Sun (Shapiro
et al. 2014). Recent non-linear simulations led by Stru-
garek et al. (submitted) seem to show that the Pcyc vs
Prot relation may not be so straightforward. Indeed in
some of dynamo models, the cycle period decreases while
the rotation rate increases (see also Jouve et al. 2010).

Since during the stellar evolution along the PMS evo-
lution track, the radiative zone of the star increases, we
also wish to know how the magnetic field evolves in the
radiative zone as convective dynamo action does not sup-
port it anymore. These magnetic fields are observed in
massive stars, since their envelop is radiative, where they
are often oblique dipoles. In solar-like stars, knowledge
of magnetic field in radiative core is important even if it
is buried under the dynamo field. Indeed it is a candidate
for the transport of angular momentum in the stellar core
that can explain the rotation profile observed by helio-
and asterioseismology (Schou et al. 1998; Garćıa et al.
2007; Benomar et al. 2015). These magnetic fields left by
a convective zone in a stably stratified zone are called fos-
sil fields. Studies led by Tayler (1973), Markey & Tayler
(1973), Braithwaite (2007) and Brun (2007) showed that
purely poloidal or toroidal magnetic fields are unstable in
such stably stratified zones. Tayler (1980) proposed that
the field needs a mixed configuration to be stable in ra-
diative regions. This statement was confirmed by numer-
ical simulations and theoretical works (e.g. Braithwaite &
Spruit 2004; Duez et al. 2010). Braithwaite (2008) intro-
duced a constraint on the relative amplitude of poloidal
and toroidal field in a stable fossil field: Epol/Etot < 0.8.
Hence it is interesting to assess if the left over magnetic
field is stable or if it must relax to a different configura-
tion.

The origin of stellar magnetic activity and regular cy-
cle is supposed to be linked to a global scale dynamo
acting in and at the bottom of the convective envelop
(Parker 1993). This dynamo is a complex dynamical pro-
cess that can be understand using the mean field theory
(Moffatt 1978). Its main ingredients are the Ω-effect,
and the helical nature of small scales convective mo-
tions, called the α-effect (e.g. Parker 1955, 1977; Steen-
beck & Krause 1969). Alternative mechanisms based on
the influence of surface magnetic fields have also been
developed, as in the Babcock-Leighton dynamo process
(Babcock 1961; Leighton 1969; Choudhuri et al. 1995;
Charbonneau 2005; Jouve & Brun 2007; Miesch & Brown
2012). These theories allow us to reproduce large scales
behavior of the magnetic fields in solar-like stars, such as
cycles, but lack an explicit treatment of turbulence and
many non linear effects. Thus we cannot rely only on the
mean field theory and 3D simulations are an ideal tool to
perform such studies. The earliest non-linear, turbulent
and self-consistent works on stellar convection and dy-
namo models in spherical geometry, first with the Boussi-
nesq approximation then with the anelastic hypothesis,
were done during the mid 80’s by P. Gilman and G.
Glatzmaier (Gilman 1983; Glatzmaier 1985a,b). During
the last three decades, several groups developed global or
wedge-like MHD simulations of convective dynamo, in-
cluding the ASH code (Brun et al. 2004; Browning et al.
2006; Browning 2008), the PENCIL code (Dobler et al.
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2006; Warnecke et al. 2013; Käpylä et al. 2013; Guer-
rero et al. 2013), the EULAG code (Ghizaru et al. 2010;
Racine et al. 2011; Charbonneau 2013) and the MAGIC
code (Christensen & Aubert 2006; Gastine et al. 2014).
Observations, theoretical models and 3D numerical sim-
ulations enable us to improve our understanding of the
MHD processes in solar-like stars. Nowadays we believe
that magnetic field in convective envelope of solar-like
stars is due to a dynamo with two separate ranges of
spatial and temporal scales. The global dynamo ex-
plains regular cycles and butterfly diagrams and might
be seated at the base of the convective zone and in the
tachocline. A local dynamo is likely to be at the ori-
gin of the rapidly varying and smaller scale magnetism.
All these phenomena take place in the convective zone
of the star as all the dynamo theories cited above need
convection motions and differential rotation as essential
ingredients for regenerating magnetic field.

In our study, we compute 3D global magnetohydrody-
namical models of PMS stars at different stages of their
early evolution to understand the impact of both struc-
tural change and rotation on the internal mean field flows
and magnetic field. We choose five different models with
specific stellar parameters as presented in section 2. In
section 3, we present the hydrodynamical progenitors of
our five models. We study the influence of both stellar
rotation rate and internal structure on the internal flows
and convective motions. Thereafter, we introduce mag-
netic fields in these HD progenitors. Thus, we can ob-
serve the resulting changes on the hydrodynamical flows
and convection (see section 4). In section 5, we analyze
the amplitude and topology of the magnetic field. We
also look at the magnetic field generation in the convec-
tive zone and how it evolves as the models go through
its evolution and as rotation rate and internal structure
change. We finally follow the evolution of the magnetic
field in the radiative zone by looking at its stability in
the core and its relaxation along the stellar evolution. In
section 6, we discuss the results and we conclude.

2. MODEL SETUP

To study the evolution of magnetic field during the
PMS phase, we compute 3D global magnetohydrody-
namical models of one solar mass star. However the
PMS stellar evolution lasts for several Myrs whereas 3D
MHD simulations can only compute stellar evolution for
several hundreds of years. Since we cannot compute
our simulations for secular time-scales, we select specific
models that represents the important stages of the PMS
phase. To characterize these models, we need adequate
values for luminosity, rotation rate, radii ... These phys-
ical values are given by 1D stellar evolution models that
were computed with the STAREVOL code (Amard et al.
2016).

2.1. 1D evolution

We study the evolution of a 1 M� solar-like star during
the early phase of stellar evolution from a fully convec-
tive progenitor to the ZAMS. This evolution drastically
changes the main stellar parameters: radius, size of the
radiative core, rotation rate, luminosity and tempera-
ture, as represented in Figure 1. On the upper plot, we
can observe that during this evolution the radial struc-
ture of the star evolves. At the very beginning of the

PMS phase, no nuclear reactions occur in the core of the
young star. The energy of PMS stars is due to the release
of gravitational potential energy. Convection is efficient
enough to transport energy in the stellar interior. Thus,
at the very beginning of the PMS phase, young stars are
fully convective. Since there is no internal process to
counterbalance the gravitational contraction, the radius
of the star decreases and we can see in Figure 1 that the
stellar radius contracts from 2.5 R� to 1 R�. As the
outer radius becomes smaller, temperature and density
increase at the center of the star and the opacity of the
core drops as : κ ∝ ρT−7/2. When the opacity becomes
small enough, the radiative zone appears at the center
of the star. We see on the Figure that this radiative
zone grows up to 70% of the outer radius as the star
reaches the ZAMS and remains stable later on the main
sequence.

As the star contracts, the rotation rate of the star also
changes through angular momentum conservation (Gal-
let & Bouvier 2013). This evolution shows three differ-
ent main phases that can be observed in Figure 1 (mid-
dle panel). First of all, we see a locking phase with the
protostellar disk where stellar rotation remains constant
until around 4 Myr. Then the contraction of the star
impacts its rotation rate that increases due to angular
momentum conservation until the end of the ZAMS, at
50 Myr in our study. In the third and last phase, the
star rotation decreases following the Skumanich trend:
Ω0 ∝ t−1/2 due to the influence of wind-braking (Réville
et al. (2015a)). This modeling of the stellar rotation rate
has free parameters such as the initial period at 1Myr,
the time coupling between the core and the envelope,
the lifetime of the disk and the scaling constant of the
wind-braking law. Hence, slow, median and fast rotators
can be modeled, as seen in Gallet & Bouvier (2013) and
Gallet & Bouvier (2015). For our study, we choose an in-
termediate rotational evolution profile that comes from
STAREVOL models (Amard et al. 2016).

1D simulations, such as STAREVOL models, can com-
pute stellar evolution over secular time-scales. However,
they are restricted in space since they do not consider the
angular dependencies. On the contrary, 3D global simu-
lations give a more precise understanding of the physical
processes that take place in the star, but they do not
yet enable the study of star’s life over several million
years. To study stellar evolution, we use STAREVOL
structures to perform relevant 3D models at key instants
in the star’s evolution. We decided to select five mod-
els such that the radiative core radii (in stellar radius
unit) are well distributed, almost every 20%, and the ra-
tio between the rotation rate of two consecutive models
is smaller than two. Such radial structures enable us to
create reference states and thus initialize our 3D ASH
simulations. We now turn to describe the 3D setup.

2.2. 3D numerical models

2.2.1. Computational methods

The 3D full sphere simulations of the evolution of solar-
type stars from the proto-stellar phase to the ZAMS pre-
sented here are computed with the ASH code (Clune
et al. 1999; Brun et al. 2004; Alvan et al. 2014). This
code evolves the Lantz-Braginski-Roberts (LBR) form of
the anelastic MHD equations for a conductive plasma
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Fig. 1.— Choice of 3D ASH models based on stellar evolution
computed with STAREVOL code. Top : Evolution of stellar radius
and radius of the radiative core during the stellar evolution.Middle
: Stellar rotation rate as a function of time. At the beginning of
the PMS phase, it is constant since star is still in the disk-locking
phase. Then it increases as the star contracts under the effect of
gravity until the ZAMS. Stellar rotation rate starts decreasing as
the stellar contraction stops and magnetic wind brakes the star.
Bottom : Relation between luminosity and temperature through
stellar evolution. Luminosity decreases, as star ages, for the 4 first
models and increases until star arrives at the ZAMS.

in a rotating sphere (Jones et al. 2011). The anelas-
tic approximation filters fast magnetoacoustic waves but
Alfvén and slow magnetoacoustic waves remain. In the

ASH code, the equations are non-linear in velocity and
magnetic field, and are linearized for thermodynamical
variables. These variables are separated into fluctuations
X and a reference state X̄, which only depends on the
radial coordinate and evolves slightly over time. We as-
sume the linearized equation of state:

ρ

ρ̄
=
P

P̄
− T

T̄
=

P

γP̄
− S

cp
, (1)

with the ideal gas law:

P̄ = Rρ̄T̄ , (2)

where ρ, P , T , S have their usual meaning, cp is the
specific heat per unit of mass at constant pressure, γ is
the adiabatic exponent and R is the ideal gas constant.
The continuity equation is:

∇ · (ρ̄v) = 0 (3)

with v = (vr, vθ, vϕ) is the local velocity in spherical
coordinates and (r, θ, ϕ) is the spherical frame rotating
at a constant velocity Ω0êz. Under the LBR formulation,
the momentum equation can be written as:

ρ̄

(
∂v

∂t
+ (v ·∇) v

)
= −ρ̄∇ω̃ − ρ̄ S

cP
g − 2ρ̄Ω0 × v

−∇ · D +
1

4π
(∇×B)×B

(4)
where ω̃ = P/ρ̄ is the reduced pressure that replaces
pressure fluctuations in LBR formulation, g is the grav-
itational acceleration, B = (Br, Bθ, Bϕ) is the magnetic
field and D is the viscous stress tensor given by:

Dij = −2ρ̄ν [eij − 1/3 (∇ · v) δij ] (5)

with eij = 1/2 (∂ivj + ∂jvi) is the strain rate tensor
and δij the Kronecker symbol. Since we study magneto-
hydrodynamical simulations, we need to consider the flux
conservation equation for the magnetic field:

∇ ·B = 0 (6)

and the induction equation

∂B

∂t
= ∇× (v ×B)−∇× (η∇×B) (7)

with η the magnetic diffusivity. The magnetic field and
mass flux are decomposed into

ρ̄v = ∇×∇× (W êr) +∇× (Zêr)
B = ∇×∇× (Cêr) +∇× (Aêr)

(8)

to ensure that they remain divergenceless to machine pre-
cision throughout the simulation. Finally the internal
energy conservation is:

ρ̄T̄

[
∂S

∂t
+ v ·∇

(
S̄ + S

)]
= ρ̄ε+

4πη

c2
j2 + 2ρ̄ν

[
eijeij − 1/3 (∇ · v)

2
]

+ ∇ ·
[
κrρ̄cp∇

(
T̄ + T

)
+ κρ̄T̄∇S + κ0ρ̄T̄∇S̄

]
where ν and κ are effective eddy diffusivities that rep-
resent momentum and heat transport by subgrid-scale
(SGS) motions, κr is the radiative diffusivity and j =
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c/4π (∇×B) is the current density. The diffusivity κ0

also represents a subgrid process. It is fitted to have the
unresolved eddy flux carrying the stellar flux outward the
top of the domain. This flux drops exponentially with
depth since it should play no role inside the radiative
zone. In the energy equation, we have a volume heating
term ρ̄ε that represents the energy generation in the core
of the star. We can fit the nuclear reaction rate by a
simple model ε = ε0T̄

n. For each model, we adjust both
parameters ε0 and n such as to have a heating source
in agreement with the corresponding 1D STAREVOL
model, see Table 1. During the early phase of stellar
evolution, this energy comes from the stellar contraction
(Iben 1965) instead of nuclear fusion. However as the
star ages the contribution of stellar contraction εgrav to
the total energy ε = εgrav + εnucl decreases (from 99.95%
in the C20 model to 3% in the C70 model). As the εnucl

becomes predominant, we notice that the exponent n is
no longer 1 but grows to reach 9 for the model on the
ZAMS, i.e. the C70 model.

2.2.2. Problem setup and boundary conditions

ASH is a large eddy simulation (LES) code with a SGS
treatment for motions whose scales are below the grid
resolution of our simulations. These unresolved scales
are modeled with diffusivities ν, κ and η that repre-
sent transport of moment, heat and magnetic field in
those small scales. The eddy thermal diffusivity κ0 that
drives the mean entropy gradient is computed separately
and occupies a tiny region in the upper convection zone
(dashed plot in Figure 2). This diffusivity transports
heat through the outer surface where radial convective
motions vanish.

The radial structure of velocity, magnetic and ther-
modynamical variables is computed with a fourth-order
finite differences while angular structure is computed
with a pseudo-spectral method with spherical harmon-
ics expansion. Time evolution is solved by a Crank-
Nicolson/Adams-Bashorth second-order technique, ad-
vection and Coriolis been computed thanks to Adams-
Basforth part and diffusion and buoyancy terms thanks
to the semi-implicit Cranck-Nicolson scheme (Clune et al.
1999).

The domain of our simulations goes from the center of
the star to 96% of the stellar radius for each case con-
sidered in this study. Indeed ASH code does not com-
pute 3D simulations up to 100% of the stellar surface
since more complex equation of state and very small con-
vection scales would required extreme resolution. More-
over, except for the first one, all our models have two
zones with a convective envelope and a radiative core.
Since our models are full-sphere, boundary conditions
only have to be imposed at the surface of the star and
regularization of the solution is done at the center of the
star, as described in Alvan et al. (2014). The velocity
boundary conditions are impenetrable and torque-free:


vr|rtop = 0

∂

∂r

(vθ
r

)∣∣∣∣
rtop

=
∂

∂r

(vϕ
r

)∣∣∣∣
rtop

= 0
. (9)

Fig. 2.— Radial luminosity balance for two models : C00 (purple)
and C20 (blue). Luminosities and radii are normalized to their re-
spective stellar values. In these balances, we show the contribution
to the total luminosity (solid line) from radiative diffusion (short
dashes), enthalpy (dot-dashed), kinetic energy (three-dot-dashed),
modeled SGS processes (long dashes) and viscous diffusion (dot)
averaged over 400 days. We notice that in the center of the star,
flux luminosity is greater in the model which have a small radiative
zone. Indeed it is sustain by the radiative flux (dashed) that is very
low in the fully convective star.

We also fix a constant heat flux

∂S

∂r

∣∣∣∣
rtop

= 0 and
∂S̄

∂r

∣∣∣∣
rtop

= cste. (10)

Finally, we want the surface magnetic field B to match
an external potential field Φ that implies:

B = ∇Φ and ∇2Φ|surface = 0. (11)

From 1D stellar structure computed by STAREVOL,
a 1D Lagrangian hydrodynamical stellar evolution code
(Siess et al. 2000), we initialize the 3D ASH simula-
tions. The gravitational acceleration is fitted from the
STAREVOL models. The entropy gradient gives us the
internal structure of the star: convection occurs where
dS̄/dr is negative and for dS̄/dr positive, we have the
radiative zone (see Figure 3). In our models we impose a
small constant negative entropy gradient in the convec-
tion zone. The entropy gradient in the radiative zone is
deduced from 1D structure as shown in the upper panel
of the Figure 3. In this Figure, we see that as the star
evolves along the evolutionary path, the radiative zone
grows. Moreover it becomes more and more stratified,
i.e. the values of entropy gradient are greater. We run
the simulations over hundreds of convection overturning
times and we obtain the flux balance given by the Figure
2. The luminosity flux can be decomposed in several con-
tributions : radiative diffusion, enthalpy, kinetic energy,
modeled SGS processes and viscous diffusion. By looking
on the blue plots, corresponding to the C20 model, we
notice that in the radiative core, the radiative flux is the
main contributor to the total flux and the enthalpy flux
is negligible whereas in the convective zone, we see that
the radiative flux decreases with radius and the convec-
tive flux dominates. In the C00 model (purple lines), the
radiative flux is very low and the luminosity is mainly
sustain by the enthalpy flux. In both models, the en-
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TABLE 1
Stellar parameters of our numerical simulations

Case Stellar radius D Radiative radius Luminosity Rotation rate ε0 n

(R�) (cm) (R∗) (L�) (Ω�)

C00 2.44 1.7× 1011 0 2.09 3.5 2.7 1
C20 1.87 1.04× 1011 0.2 1.16 3.5 1.3 1
C40 1.45 6× 1010 0.4 0.66 4.47 0.24 1.7
C60 1.10 3.6× 1010 0.6 0.49 8.74 9× 10−3 3
C70 1 2.08× 1010 0.7 1 14.0 10−12 9

Note: Seven stellar parameters that characterize the five stars we choose to model (see Figure 1) : radius, thickness of the convective
envelop (D = rtop − rbcz), radius of the radiative core, luminosity, rotation rate and ε0 and n characterizing the nuclear reaction rate :
ε = ε0T̄n. In all our models, we choose to fix the outer radius of the simulation to 96% of the stellar radius. The C70 simulation has the
same internal structure than the Sun. The main difference between this model and the Sun is its rotation rate which is 14 times greater in
our model.

Fig. 3.— Zoom, on the radiative core and the tachocline, of the
radial evolution of the entropy gradient for the five hydrodynamical
simulations. Left: In the radiative core, the entropy gradient is
positive. As the radiative core grows in the different models, it
also becomes more stratified since the entropy gradient amplitude
becomes larger. Right: In the convective envelop, the entropy
gradient is constant and fixed to a small negative value at initial
time, then it evolves to become more superadiabatic.

tropy flux is confined to the surface layer and represent
the flux carried by the unresolved motions.

For each model, we use the same numerical resolution
Nr×Nθ×Nϕ = 500×768×1536 that gives a horizontal

Fig. 4.— Kinematic viscosity for the C20 model. In the convec-
tive envelop, the diffusivity decreases as the depth increases. The
interface between the convective and the radiative zone is charac-
terized by a jump of two order of magnitude of the diffusivity. In
the radiative core, we keep a constant diffusivity.

resolution with a maximum spherical harmonic degree
lmax = 512. We adapt the radial dependence of diffu-
sivities to accommodate to the coexistence of turbulent
convective envelope with stably stratified radiative inte-
rior as the star evolves. We use the following formula:

ν = νtop

[
c1 + (1− c1) f(r)

(
ρ

ρ0

)m]
, (12)

with κ and η being calculated with the same type of
formula. f is a step function:

f(r) =
1

2

[
tanh

(
r − rt

σstiff

)
+ 1

]
, (13)

with the stiffness σstiff = 0.09× 1010 cm, the density de-
pendency m = −0.2 and c1 = 0.01 remain the same for
all the models. This profile of diffusivity is illustrated in
Figure 4 for the C20 model. Diffusivity is constant in
the radiative core, the interface between the two zones
is characterized by a jump of two order of magnitude
and the diffusivity slightly decreases into the convective
envelop. The radii rt, that locates the jump in diffu-
sivities, and νtop, that gives the value of the kinematic
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TABLE 2
Characteristics of diffusivity profiles

Case rt (cm) νtop (cm2.s−1) νrz (cm2.s−1)

C20 2.15× 1010 6× 1012 6× 1010

C40 2.80× 1010 2.8× 1012 2.8× 1010

C60 4× 1010 1.6× 1012 1.6× 1010

C70 4.4× 1010 4× 1012 4× 1010

Note: Quantities caracterising diffusivity profiles. Radii rt locate
the jump of diffusivity for the radiative core. This jump prevents
the spreading of the convective envelope into the radiative core
as we compute the simulations. νtop, νrbcz and νrz respectively
represent the values of the diffusivity at the surface, at the base of
the convective envelope and in the radiative core.

viscosity at the surface, are referenced in Table 2. We
keep a constant Prandlt number, Pr = ν/κ = 1. In the
C00 simulation, we choose a magnetic Prandlt number at
0.8, which allows us to get dynamo action. When com-
puting the following model, with a small radiative core,
we first keep this value of Pm to choose the magnetic
diffusivity. However the corresponding Rm was not large
enough to trigger dynamo action. Hence we decrease η
to reach a sufficient Rm which gives us Pm = 2. Since in
the last three models this value enables us to have dy-
namo action in the convective envelop, we choose to keep
it and to work at Pm constant for all the models with a
radiative core.

Table 3 shows us the characteristic numbers for our
five models. The Elssasser numbers are small in all our
simulations but it increases as the models rotate faster
and get closer to a magnetostrophic state. The Rayleigh
numbers in all models are greater than the critical value
which is about 104 for the values of Taylor numbers used
her (see Jones et al. 2009). The Rossby numbers are sig-
nificantly smaller than 1. Hence, according to Brun et al.
(2017), we can expect the differential rotation profile of
our simulations to be solar-like stars with fast equator
and slow poles. The Elsasser number is smaller than 1 in
all models. As the star ages, this number increases with
the Lorentz begin to counterbalance the Coriolis ones.

3. HD PROGENITORS

As seen in Figure 1, we choose five models to rep-
resent the evolution of one solar mass star during the
PMS phase. The different parameters of these models
are listed in Table 1. We then performed ASH 3D sim-
ulations of such model stars for which typically 600kh
cpus are needed.

3.1. Internal flow fields

First of all, we want to analyze the impact of the evo-
lution of internal structures and rotation rates in our five
hydrodynamical simulations on the convection patterns
and internal flow fields. Convection patterns of our five
HD simulations evolve as the radiative core grows and
the rotation rate increases.

In Figure 5, shell slices of radial velocity are shown at
three different depths : 96%, 60% and 20% of the stel-
lar radius. At the surface of our models (a),(d),(g),(j)
and (m), we observe two types of convective patterns
in all simulations with, at low latitudes, elongated flows
that are aligned with the rotation axis, the so-called ba-
nana cells, and smaller scales at high latitudes. These

banana cells produce correlations in the velocity field
that increase the Reynolds stresses (Gastine et al. 2014;
Brun et al. 2017). The consequence is an acceleration
of the equator and a slowdown of the poles that explain
the differential rotation profiles of our simulations. Con-
vective scales at the surface become smaller as the star
evolves along the PMS phase (from (a) to (m)). These
changes in the horizontal direction are due to the in-
crease of the most instable modes m in the convective
zone with the rotation rate Ω0 (Jones et al. 2009). Af-
ter the surface, we look at a deeper shell in the star, i.e.
at 60% of stellar radius. In the first three models, (b),
(e) and (h), we are looking in the convective envelop,
since the radiative zone is smaller than 60% of their stel-
lar radius. In these simulations, we see that the size
of the convective patterns slightly narrows as the star
evolves. As at the surface, we see banana cells near the
equator. Moreover these patterns are modulated in am-
plitude. This phenomenon is called active nest and is
linked to small Rossby and Prandtl numbers (see Ballot
et al. 2007; Brown et al. 2008). The amplitude of convec-
tive patterns at that depth slightly decreases compared
to the one at the surface. As the radiative zone reaches
60% of the stellar radius (plot (k)), observations at this
depth are not longer focused on the convective envelope
but on the tachocline of the star. Thus we observe that
convection patterns drastically change. Small structures
disappear but there is still some persistence of the con-
vective patterns, especially at the equator. Moreover the
amplitude of the convection becomes almost four order
of magnitude smaller than the one of the previous mod-
els (see Figure 6). In the last model (n), we look at a
shell in the radiative core of the star and we can see that
the last traces of the convective patterns vanish and we
are only left with large-scale structures. At the lowest
depth, near 20% of the stellar radius, convection pat-
terns are completely different depending on the model
considered. In the C00 model (c), banana cells can be
seen. Their horizontal extents are larger than the ones at
the surface and at 60%. As the flows go deeper into the
stars, they merge and form larger structures. The am-
plitude of the velocity keep the same order of magnitude
than in the other depths even if it decreases slightly. In
the first model with a radiative zone, the observed shell
slice (f) corresponds to the tachocline of the star. As
in the mid-depth cut for the C60 case (k), small convec-
tive structures vanish and a large-scale structure emerge.
The amplitude of convective patterns is smaller than the
one observed at the same depth in the convective zone
of the C00 model. In the last three simulations ((i), (l)
and (o)), the observed shell slice is inside the radiative
zone. A large-scale structure is predominant in all these
models. The radial velocity amplitude is much smaller
than the one observed in the first two models.

Radial velocity gives a good picture of the convection
flows and patterns that occur in our 3D stellar simu-
lations. In Figure 7, we show an equatorial slice of the
radial velocity for each hydrodynamical model. In all the
models that have a radiative zone, gravito-inertial waves
can be observed in that core. In the C70 simulation, we
capture a global mode in the radiative zone. The am-
plitude of this mode is high enough to hide the weaker
progressive internal gravity waves that can only be seen
near the base of the convective zone. These waves are
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TABLE 3
Characteristic numbers

Case Ro Ra Ta Re Pr Re,m Pr,m Λ

C00 4.4× 10−3 5.9× 107 1.9× 108 61.2 1 48.96 0.8 3.2× 10−3

C20 5.1× 10−3 4.0× 107 1.2× 108 55.6 1 111.2 2 9.1× 10−3

C40 6.4× 10−3 6.0× 107 4.5× 107 43.0 1 86.7 2 1.2× 10−2

C60 6.6× 10−3 2.3× 108 2.9× 107 35.5 1 71.0 2 3.6× 10−2

C70 1.7× 10−2 2.0× 108 4.1× 106 34.8 1 69.6 2 3.5× 10−2

Note: Characteristic numbers for the MHD simulations. The characteristic numbers are evaluated at mid-depth of the convective zone.
These numbers are defined as the Rossby number Ro = vrms/(2Ω0D), the Rayleigh number Ra = (−∂ρ/∂S)(dS̄/dr)gD4/ν2, the Taylor
Number Ta = 4Ω2

0D
4/ν2, the Reynolds number Re = vrmsD/ν, the Prandtl number Pr = ν/κ, the magnetic Reynolds number Re,m =

vrmsD/η, the magnetic Prandtl number Pr,m = ν/η and the Elsasser number Λ = B2
rms/(8πρΩ0vrmsD) (here defined with vrms, not eta).

generated by the downflows of the convective envelop.
These flows come from the surface to the base of the
convective zone, where they hit the radiative zone and
excite waves in there (Brun et al. 2011; Alvan et al. 2014,
2015, for a detailed discussion of such phenomena in 3D).
In the convective envelop, changes in convective patterns
are observed in the different models. They are due to the
changes in rotation rate (Jones et al. 2009) and in aspect
ratio size of the convective envelope. At first, we fo-
cus on the differences between the first two models since
they have the same stellar rotation rate : the main dif-
ference between the models is the size and geometry of
the convective envelop. By comparing these models, we
see that the size of convective patterns do not change
much through the change of internal structure and the
appearance of a radiative core. In the following models,
rotation rate increases as the star contracts. We notice
that both radial and horizontal extents of the convective
patterns decrease as the rotation rate increases. Hori-
zontal changes are coherent with the ones observed on
the shell slices and with the increase of rotation rate dis-
cussed by commenting Figure 5. Changes on the radial
direction may be linked to the changes in geometry and
size on the convection zone.

As the rotation changes, differential rotation profiles
also vary. Figure 8 shows the differential rotation
profile of our models in the meridional plane, averaged
over longitude and 400 days. All our models have a
solar-like profile with a fast prograde equator and slow
retrograde poles which is coherent with their Rossby
number (see Gastine et al. 2014; Brun et al. 2017). They
are also solar-like in the sense that their rotation rate
monotically decreases from the equator to the poles,
except for a small region around the poles where the
average is not stable due to small level arm. Profiles
are more cylindrical than the one provided by helioseis-
mology for the Sun. This effect is expected for rapidly
rotating stars and linked to Taylor-Proudman constraint
(Brun & Toomre 2002; Brown et al. 2008; Brun et al. 2017).
In Figure 8, radial cuts show an important radial shear
at low latitudes.

Except for the C00 one, all our models have two zones
with a convective envelope and a radiative core. Another
characteristic of the solar differential rotation profile is
the solid body rotation of the radiative core. In the C20
model the core rotation is not constant. However is does
depend only of the radius and no longer of the latitude.
In models with a larger core, we see that the core is in
solid rotation, except for the overshooting zone where the
convective motions penetrate the radiative zone. There is

TABLE 4
Contrasts in differential rotation

Case ∆Ωlat ∆Ωr ∆Ωlat/Ω0

C00 18.0 19.4 1.2× 10−2

C20 75.1 86.3 5.2× 10−2

C40 27.8 30.6 1.9× 10−2

C60 56.2 67.5 3.9× 10−2

C70 89.7 96.7 6.0× 10−2

Note: Differential rotation in nHz with ∆Ωlat measured near the
surface and ∆Ωr measured at the equator between the surface and
the base of the convective zone. ∆Ωlat/Ω0 represents the relative
latitudinal shear measured near the surface. All the values have
been averaged over 400 days.

an interface of shear between the differentially rotating
convection zone and the radiative interior which is in
solid body rotation. This interface is called a tachocline
(Spiegel & Zahn 1992) and plays an important role in
the dynamo process (Browning et al. 2006).

A more quantitative analysis of the differential rotation
can be achieved by calculating the following quantities :
∆Ωlat and ∆Ωr. ∆Ωlat is the contrast in differential ro-
tation near the surface between two latitudes : 0° and
60°. ∆Ωr is the difference in differential rotation near
the equator at two depths : near the surface and at the
base of the convective zone. The values of these quan-
tities are listed in Table 4. As the rotation rate of the
star increases, from the C40 model up to the model C70,
angular velocity contrast increase whereas the relative
shear remains quite constant.

As the Rossby number is small in all our simulations,
we expect our meridional circulation to be multi-cells
which is the case (Featherstone & Miesch 2015). Merid-
ional circulation can be represented by plotting the con-
tours of the stream function Ψ, as defined by Miesch et al.
(2000):

r sin θ〈ρ̄vr〉 = −1

r

∂Ψ

∂θ
and r sin θ〈ρ̄vθ〉 =

∂Ψ

∂r
(14)

In Figure 8, cells in in the stellar interior are cylindri-
cal and aligned with the rotation axis for all models.
The amplitude of vθ is between 8 and 25 m.s−1, depend-
ing on the model with no clear trend as the star evolves
along the PMS phase. In each hemisphere, there is an
changeover of sign between the cylindrical cells with an
anti-symmetry with respect to the equator. At the sur-
face, the meridional circulation keeps the same behavior,
regardless of the model. It is counter-clockwise in the
northern hemisphere and clockwise in the southern, i.e.
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Fig. 5.— Radial velocity for the five HD simulations (rows) at three different depths (columns) : 96%, 60% and 20% of stellar radii.
Up flows are shown in red/white and down flows in blue/black. At the same depth, the internal structure is not the same in the different
models since radiative cores have different sizes. This change, linked with the evolution of stellar rotation rate, leads to important difference
for the convection amplitude and patterns.

the flows go from the equator to the pole at the surface
and come back to the equator deeper in the star’s inte-
rior.

Changes in rotation rate and in geometry of the convec-

tive envelop also impact the angular momentum trans-
port. Since we choose stress-free and potential-field
boundary conditions at the top of our simulations, no
net external torque is applied, and thus angular momen-
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Fig. 6.— Radial velocity for the five HD simulations time-
averaged over the last 400 days of each simulation. At the base
of the convective envelop, we see a jump in amplitude with values
of velocity in the radiative zone that are 100 times, for the C20
model, to 100 000 times smaller than the value observed in the
convective zone.

tum is conserved. Following previous studies (e.g. Brun
& Toomre 2002), we study the contribution of the differ-
ent terms in the balance of angular momentum: viscous
diffusion, meridional circulation and Reynolds stresses.
In all models, Reynolds stresses redistribute the angu-
lar momentum outward while the viscous diffusion is in-
ward, down the radial gradient of Ω. The amplitude of
the contribution of meridional circulation is smaller and
its sign varies with radius following the numbers of dom-
inant cells as seen in Figure 8. Overall the radial balance
is well established in the five 3D hydrodynamical simula-
tions. Considering the latitudinal flux balance, Reynolds
stresses carry angular momentum towards the equator
as they are positive (resp. negative) in the northern
(resp. southern) hemisphere. Viscous diffusion is pole-
ward since they tend to erase the differential rotation
in the star. Meridional circulation is a response to the
torque applied by the sum of the Reynolds and viscous
stresses and its sign varies with the multiple cells seen in
8. Latitudinal balance is longer to attain than the radial
one and is not fully established in our hydrodynamical
simulations.

3.2. Kinetic energy

To further assess the dynamics in the five cases, we
now turn to study their energetic content. The total ki-
netic energy contained in the convective zone decreases
during the PMS phase as seen in Table 5. However this
trend can be due to the decrease of the size of the convec-
tive envelop. Thus we look at the kinetic energy density
that does not depend on the volume and we notice that
there is no clear trend. Kinetic energy density can be
split into different components linked to the fluctuating
convection (CKE), the differential rotation (DRKE) and
to the meridional circulation (MCKE) as done by Miesch

Fig. 7.— Equatorial slices of locally normalized radial velocity,
e.g. at each depth the velocity is normalized by the horizontally
averaged rms velocity. Downflows are shown in blue/black and
upflows are in red/white. The radiative core is delimited by a
dotted black line. In that radiative core, we can see the gravito-
inertial waves that are excited by the downflows of the convective
zone hitting the tachocline.
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Fig. 8.— Contour plot-left side: Meridional circulation of HD
simulations. Counter-clockwise circulation is represented in red
and clockwise in blue. Contour plot-right side: Differential rota-
tion of HD models: C00, C20, C40, C60 and C70. These models
have different rotation rates: 3.5, 3.5, 4.7, 8.7 and 14 (in solar
units). Differential rotation in the five simulations is cylindrical.
Moreover like in the Sun, the rotation profile is prograde, i.e. the
equator rotates quicker than the poles. 1D plots: Radial cuts of
the differential rotation profile. The radiative cores, when presents,
are in solid-body rotation. There is a drop of the rotation rate in
the tachocline with respect to the value observed in the radiative
core. All quantities have been time-averaged over the last 400 days
of each simulation.

et al. (2000). These energies are defined as:

DRKE =
1

2
ρ̄〈vφ〉2

MCKE =
1

2
ρ̄
(
〈vr〉2 + 〈vθ〉2

)
CKE =

1

2
ρ̄
[
(vr − 〈vr〉)2

+ (vθ − 〈vθ〉)2
+ (vφ − 〈vφ〉)2

]
(15)

with KE = DRKE + MCKE + CKE and 〈·〉 is the lon-
gitudinal average. The values corresponding to these en-
ergy densities are reported in Table 5. In the convec-
tive zone, the MCKE is negligible compared to CKE and
DRKE. The differential rotation has the more impor-
tant contribution in all models even if this proportion
can vary, from 70% in the C40 model to 92.7% in the
C20 model. The fraction of the fluctuating convection is
smaller but not negligible.

In the radiative zone, proportions are drastically dif-
ferent since the core is stably stratified. Convection and
meridional circulation are quite reduced and hence the
associated energy densities are negligible compared to
the one due to differential rotation. DRKE represents
more than 99% of the kinetic energy of all the models
possessing a radiative core. We defined two quantities
to study the evolution of kinetic energy in both zones:
EKRZ/CZ is the ratio between the kinetic energy and
KERZ/CZ is the ratio between the kinetic energy den-
sities. The values of these ratios are given in Table 5.
Hence we notice two opposite trends. In total value,
the energy in the radiative zone tends to increase more
rapidly than the one in the convective zone, even if the
energy stored in the convective zone is still much higher
than the one in the core. However the sizes of both zones
change since the radiative core grows. Thus we also have
to look at the ratio of energy densities. At first we notice
that the fraction of density energy stored in the radiative
core is not negligible, especially when the core is small.
Secondly, this fraction tends to decrease as the radiative
core grows. To put it in a nutshell, there is more and
more energy in the radiative core and its contribution to
the total energy, even if it remains small, grows. But
by looking at the energy densities, we notice that if the
energy ratio grows, the energy density ratio decreases
as the radiative core grows: there is more energy in the
radiative zone but it is less concentrated.

4. MAGNETIC FIELD PROPERTIES AND EVOLUTION
DURING THE PMS PHASE

In the previous section, we saw how the evolution of the
star along the PMS phase modified its internal structure
and flows. We now want to study the impact of this
evolution on the resulting internal magnetic field of the
star both in the convective and radiative zones.

4.1. The procedure

Figure 9 shows how we proceed to reproduce this evo-
lution with ASH simulations. First of all, we inject a
seed magnetic field in the fully convective hydrodynami-
cal model. This weak seed confined dipole magnetic field
represents the field left by the proto-stellar phase. We
run the MHD simulation of the fully convective model
until it reaches an equilibrium state with a dynamo gen-
erated field. Then we inject the magnetic field resulting
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TABLE 5
Kinetic energies in hydrodynamical simulations

Case EK KE DRKE MCKE CKE EKRZ/CZ KERZ/CZ
(1039 erg) (106 erg.cm−3) (106 erg.cm−3) (erg.cm−3) (105 erg.cm−3)

C00 114 5.52 5.12 (92.7%) 379 (0.0068%) 4.05 (7.30%) - -
C20 62.9 6.89 6.39 (92.7%) 457 (0.0066%) 5.04 (7.30%) 4.0× 10−3 0.5
C40 4.35 1.11 0.776 (70.2%) 68.2 (0.0062%) 3.29 (29.8%) 1.5× 10−2 0.22
C60 4.04 3.11 2.63 (84.5%) 170 (0.0055%) 4.82 (15.5%) 1.2× 10−2 0.15
C70 2.01 2.18 1.78 (81.1%) 454 (0.021%) 4.11 (18.8%) 2.7× 10−2 0.05

Note: The first column gives the global energy in the convective zone (in erg). The four following columns show the kinetic energy density
(KE) split into three components : convection (CKE), differential rotation (DRKE) and meridional circulation (MCKE). The kinetic energy
densities KE, DRKE, MCKE and CKE are reported in erg cm−3. They take into account the changes in size and geometry of the convective
zone in the different models. All values are averaged over a period of 400 days.

Fig. 9.— Description of the procedure to study the PMS evo-
lution of an stellar magnetic field. Once we verified that the hy-
drodynamical models have equilibrated internal flows and coupling
between the radiative core and the convective envelop, we introduce
a seed magnetic field in the first model, here the fully convective
one. This field is chosen to represent the internal magnetic field of
the star after the proto-stellar phase. We run the computation of
the fully convective model with this magnetic field until this model
is equilibrated, we take its final magnetic field and put it in the
following model. Then we re-do all the steps until we reach the
end of the PMS with the C70m model.

from this simulation into the C20 hydrodynamical model.
Hence, we can see how the change of internal structure
affects the magnetic field. Once this simulation reaches
an equilibrium state, in the statistically stationary sense
(see Figure 10), and the magnetic field has relaxed in the
radiative core, we introduce the resulting magnetic field
in the following hydrodynamical model. By reproducing
these operations with all the hydrodynamical models, we
can see the influence on the magnetic field of the changes
of internal structure and rotation rate caused by stellar
evolution.

4.2. Magnetic field generation and evolution

Magnetic and velocity fields are linked by dynamo ac-
tion and Lorentz forces. Hence, as we injected the re-
sulting magnetic field of a model n into the following
hydrodynamical model n + 1, this field has to adapt to
the new internal structure and flows. Moreover, the in-
jection of the magnetic field also has an influence on the
internal structure and flows. Figure 10 shows the evo-
lution of the kinetic and magnetic energies in the C20m
model after the injection of the magnetic field resulting
from the fully convective dynamo model as we now run it
in MHD mode. Kinetic energy drops with the presence
of the magnetic field.The decrease is due to a drastic
change in the differential rotation profile which will be

Fig. 10.— Evolution of energies when magnetic field resulting
from the C00m model is introduced into the hydrodynamical sim-
ulation of the C20 model. The origin of time (t=0) in the figure
corresponds to the introduction of the magnetic field in the C20
hydrodynamical model.

describe below (see section 4.3). Magnetic energy has a
burst as it has to adapt to the new internal structure
and flows. Both poloidal and toroidal energies grow be-
fore decreasing. After a transient phase, of roughly 2500
days, kinetic and magnetic energies stabilize and a gen-
uine dynamo process occurs in the convective envelop.

Figure 11 shows us radial velocity at the surface of the
stars. By comparing it with those observed in 3.1, we see
similar patterns with prograde banana cells at the equa-
tor. Size of convective patterns do not seem to change
much between the HD and MHD simulations. The 3D
topology of the radial velocity is illustrated by Figure 12
for the C40 and C40m models. We notice the cylindri-
cal patterns of convection linked to fast rotation in both
cases. The tangent cylinder can be seen as velocity is
smaller in it. These two figures, 11 and 12, also show the
topology of the magnetic field inside and outside the star.
The radial component of the magnetic field is shown at
the surface of the star and we see well-defined patterns
with a growing amplitude as the star grows along the
PMS evolution, except for the C70m model which has an
amplitude of Br similar to the C40m model. Bϕ is shown
with equatorial slices. In these slices we can notice that
there is two different behaviors of magnetic field depend-
ing on the zone, convective or radiative, of the star. In
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Fig. 11.— The two first columns show the shell slices at the surface of radial velocity and radial magnetic field for the five MHD
simulations. The last column shows the equatorial slice of Bϕ for each model.

the convective zone, the magnetic field, that comes from
the dynamo process, is quite turbulent whereas in the
radiative core the field relaxes and possesses smoother
and larger structures. The 3D view shows us a poten-
tial extrapolation of the magnetic field outside the star
which is complex, highly non-axisymmetric and exhibits
as well extended transequatorial loops.

As we propagate the magnetic field from one model to
another, we want to analyze its time evolution through
the PMS phase. Thus we plot, in Figure 13, a butterfly

diagram of our complete set of simulations. This diagram
is a 2D plot in time and latitude at different radii (96%,
60% and 20% of the stellar radius) of 〈Bϕ〉, the longi-
tudinal magnetic field averaged over ϕ. At 96% of the
stellar radius, i.e. at the surface of the simulation, and at
60% of the stellar radius, we see cycles in both C00m and
C20m models (see the upper and middle panels). A finer
study of these cycles will be done in section 5.5 on the
cycle period and the sense of the dynamo wave. Sharp
transitions occurs as the magnetic field goes from one
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Fig. 12.— 3D views of the C40 and C40m models. Top: Radial
velocity of the hydrodynamical model. Bottom: Radial velocity
of the MHD model with the potential extrapolation of magnetic
field outside the star. Upflows in red and downflows in blue. Field
lines are color coded with the radial component of the magnetic
field.

model to the following, which is coherent with the burst
observed in the volume integrated energy analysis. How-
ever some magnetic structures are preserved even during
the transition between the different simulations. In the
lower plot, at 20% of the stellar radius, we observe that
the butterfly diagram has a different behavior depending
on the models. In the fully convective star, we still see
cycling patterns and a propagation of the field from the
equator to the poles which is coherent since we are still
in the convective zone of the star. When the magnetic
field is injected into the C20m model, there is a major
change. Indeed, in this model, the observed radius is no
longer in the convective envelop, but in the tachocline of
the star. We can notice that we do not see any propaga-
tion patterns and the amplitude of Bϕ is higher than in
the convective case, likely due to the larger radial shear
of Ω in the C20m model. This can be explain as the
tachocline is a zone of high shear where global dynamo
might be seated. From the C40m model to the C70m
one, the observed radius lies in the radiative core. The
amplitude is much lower than in the tachocline and less
structured than in the C00m model, i.e. we see not cy-
cling patterns. The magnetic field relax in the radiative
zone until the ZAMS.

Hence we see that B evolves quite substantially from

Fig. 13.— Butterfly diagram for the longitudinal component of
the magnetic field 〈Bϕ〉.The five cases are represented on this 2D
plot in time and latitude at different radii of 96%, 60% and 20%
of the stellar radius (for each model). The origin of time (t=0) in
the figure corresponds to the beginning of the C00m model. As
we go from one model to another, changing the internal structure
but propagating the magnetic field, we can see that structures are
conserved.

one model to the other. The source of these changes, and
the type of field generation it produces, will be discussed
in section 5.

4.3. Mean flows HD vs. MHD

The introduction of magnetic field in the hydrodynam-
ical models strongly impacts the internal flows we studied
in the previous section 3.1. One major change is the pro-
file of differential rotation due to the influence of Maxwell
stresses (Brun et al. 2004). Comparison between hydro-
dynamical and MHD simulations are shown in Figure
14. We can see that the presence of magnetic field tends
to reduce the latitudinal variation of the differential ro-
tation in the convective envelop. Solid rotation in the
radiative core is also altered by magnetic fields. This
change is certainly due to diffusion and spreading of the
differential rotation of the convective envelope into the
radiative zone. The rotation profiles of the MHD sim-
ulations remain prograde but less monotonic and con-
trasted. Changes on structures of the internal flows can
be observed through the equatorial slice of the C20 and
C20m models in Figure 15. In this figure, the left side of
the slice comes from the progenitor HD simulation and
the right side shows the result of the MHD model. The
horizontal extent of the convective patterns do not dras-
tically change when the magnetic field is introduced. On
the contrary, we notice that the radial extent of these
structures is larger in the MHD models that in the hy-
drodynamical ones. This property is coherent with the
changes in differential rotation profiles shown in Figure
14 and can be seen in each simulation. Indeed, as the
differential rotation profiles are flatter in the MHD mod-
els, the shearing is smaller and thus the radial extent of
the convective structures are more elongated.

Meridional circulation is also impacted by the intro-
duction of the magnetic field. The cells are still cylin-
drical and aligned with the rotation axis but there is no
anti-symmetry at the equator, as it was observed in the
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Fig. 14.— Contour plot-left side: Meridional circulation of the
MHD simulations. Contour plot-right: Differential rotation of the
MHD simulations. 1D plots: Radial cuts of the differential rota-
tion profile. Black plots come from the HD simulations and the
red plots results from the MHD models. In all models, the differ-
ential rotation is flatten by the introduction of magnetic field. All
quantities have been time-averaged over the last 400 days of each
simulation.

Fig. 15.— As in Figure 7, we show here the equatorial slices of
normalized radial velocity for the C20 and C20m simulations, with
the downflows represented in blue/dark and upflows in red/white.
The HD simulation is shown on the left side while the MHD one
is plotted on the right side of the slice. We see that the internal
magnetic field does not drastically change the horizontal extent of
the convective patterns whereas the radial patterns are larger in
the MHD simulation than in the HD one.

hydrodynamical case. A large clockwise cell spread both
sides of the equator for the first two models. In the sim-
ulations with a larger core, this cell breaks and we see
two smaller cells with opposite signs on both sides of the
equator.

The change in differential rotation, observed in the
MHD simulations, can be understood by the presence of
two additional contributions to the way angular momen-
tum is redistributed in the convective shell: e.g. Maxwell
stresses and large scale magnetic torques (Brun et al.
2004). As seen in section 3.1, Reynolds stresses carry an-
gular momentum outward whereas the viscous diffusion
is inward. The introduction of the magnetic field mod-
ifies this balance as the inward transport in no longer
supported by the viscous diffusion, since the differential
rotation has been quenched, but by the Maxwell stresses
and large scale magnetic torques. In the MHD simu-
lations, the radial balance of angular momentum trans-
port is well established. However the latitudinal balance
is not fully achieved yet when we propagate the mag-
netic field from one model to the following. We choose
to stop our simulations when DRKE is mostly constant
in time to inject the resulting magnetic field in the fol-
lowing model. The latitudinal balance is quite long to es-
tablished and for computional resources issues we cannot
compute each model until it reaches this balance. How-
ever we notice some trends in the latitudinal transport of
angular momentum. The Reynolds stresses are still equa-
torward and the viscous diffusion poleward. The trans-
port linked to Maxwell stresses and large scale magnetic
torques is not completely stable but is mainly poleward.
The meridional circulation that helps to established the
balance varies in signs as it has multiple cells in each
hemisphere as seen in Figure 14. Overall, the action of
the magnetic field is to quench the angular velocity by
reducing both the radial and latitudinal contrast.
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TABLE 6
Kinetic energies of the MHD simulations

Case EK KE KEMHD/KEHD DRKE MCKE CKE

(1038) (105) (104) (102) (105)

C00m 101 4.93 0.09 4.0 (8.2%) 2.2 (0.04%) 4.5 (91.8%)
C20m 45.2 4.95 0.07 2.5 (5.1%) 5.1 (0.1%) 4.7 (94.8%)
C40m 19.4 4.95 0.44 2.6 (5.2%) 4.6 (0.09%) 4.7 (94.7%)
C60m 5.74 4.42 0.14 0.44 (1.0%) 2.3 (0.05%) 4.4 (98.9%)
C70m 4.17 4.51 0.21 1.2 (2.6%) 2.8 (0.06%) 4.4 (97.3%)

Note: The first column gives the global kinetic energy (EK) of the convective zone (in erg). The third column represents the ratio between
the kinetic energy density in the MHD simulations and the kinetic energy density in the HD simulations. The kinetic energy density is
split into three contributions: convection (CKE), differential rotation (DRKE) and meridional circulation (MCKE) for MHD models. All
energy densities are averaged over a period of 400 days and reported in erg cm−3.

TABLE 7
Magnetic energies

Case EM ME ME
KE

TME PME FME

(1038) (105) (104) (105) (105)

C00m 116 5.62 1.14 11 (19.9%) 1.5 (27.0%) 3.0 (53.1%)
C20m 68.4 7.49 1.51 6.5 (8.74%) 1.1 (14.4%) 5.8 (76.9%)
C40m 42.0 10.7 2.16 9.5 (8.86%) 2.5 (22.9%) 7.3 (68.2%)
C60m 27.3 21.0 4.75 7.3 (3.48%) 3.2 (15.5%) 17 (81.0%)
C70m 8.13 8.8 1.95 1.2 (1.37%) 0.5 (5.23%) 8.2 (93.4%)

Note: The first column gives the global magnetic energy (EM) of the convective zone (in erg). The third column represents the ratio of
magnetic to kinetic energy. The magnetic energy density (ME) is split into three contributions: poloidal mean energy (PME), toroidal
mean energy (TME) and fluctuating energy (FME). All energy densities are averaged over a period of 400 days and reported in erg cm−3.

5. EXPLAINING THE DYNAMICS

5.1. Energy content and radial flux balance

Kinetic energies are also impacted by the injection of
the magnetic field in the model. By comparing the en-
ergy densities between the hydrodynamical models and
the MHD ones (see KEMHD/KEHD in Table 6), we note
important variations. These are due to the quenching
of the differential rotation by the magnetic field. In-
deed we observe that variations of kinetic energies are
linked to the importance of the contribution of DRKE
in the kinetic energy of the hydrodynamical model. In
C00 and C20 models, where DRKE contribution is the
highest (92.7%), the ratio KEMHD/KEHD is weak (below
0.1) whereas in the C40 model, where DRKE contribu-
tion was the weakest (70.2%), the ratio KEMHD/KEHD

is important (0.44). Contrary to the HD simulations, the
kinetic energy densities are quite the same in all MHD
models. Since differential rotation is flatten, the rela-
tive influence of the components of the kinetic energy in
the convective envelope is changed, as shown in Table
6. In the convective envelop of the MHD simulations,
the DRKE decreases compared to the hydrodynamical
case and the dominant term becomes the convective one
(CKE). As in the hydrodynamical models, the contribu-
tion of MCKE remains negligible.

As seen by plotting the temporal evolution of the en-
ergy densities, in Figure 10, the magnetic energy varies
when the magnetic field is propagated from one simula-
tion to the following one. Thus our MHD models enable
us to study how magnetic energy evolves as the mag-
netic field is propagated along the PMS phase. First of
all, Table 7 shows that magnetic energy grows slightly
as the star evolves through the PMS phase. For a finer
analysis, as for the kinetic energy, we split the magnetic

energy (ME) into three different components linked to
the mean toroidal magnetic energy (TME), to the mean
poloidal magnetic energy (PME) and to the fluctuating
energy (FME):

TME =
1

8π
〈Bϕ〉2

PME =
1

8π

(
〈Br〉2 + 〈Bθ〉2

)
FME =

1

8π

[
(Br − 〈Br〉)2

+ (Bθ − 〈Bθ〉)2
+ (Bϕ − 〈Bϕ〉)2

]
(16)

where 〈·〉 is the longitudinal mean and ME = TME +
PME + FME.

By looking at Table 7, we note that all models are in
an equipartition state, and even in a superequipartition
state for the faster case. ME/KE increases as the star
ages. The ratio even almost reaches 5 for the C60m case.
Only the C70m model behaves differently with ME/KE
decreasing. As seen previously, the kinetic energy den-
sity does not change much in the MHD models. The
change observed in the ratio ME/KE is thus mostly
due to the change in magnetic energy density. Indeed,
we observe that ME increases as the star goes along the
PMS phase except for the C70m model. The specificity
of this simulation is a change in the stellar luminosity
evolution. The size of the radiative core and the rota-
tion rate monotically change during the PMS evolution
of the star whereas the luminosity first decreases down
to C60m model and then increases until the ZAMS. This
can explain a different behavior for the C70m model com-
pared to the other four cases. By looking at Table 7, we
note that, in all simulations, magnetic energy in the con-
vective zone is mainly contained in the fluctuating part
(FME). The proportion of mean field energy (TME and
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PME) varies strongly as the star evolves along the PMS
phase. At the very beginning of the PMS phase, it rep-
resents 47% of the total energy quite close to the propor-
tion of 49% found by a study led by Brown et al. (2011)
(see also Dobler et al. 2006). As the star ages, this pro-
portion decreases until 19% for the C60m model (similar
to results obtained by Browning (2008)). Finally as the
stars arrives on the ZAMS, mean field energy only rep-
resents a few percent of the total energy as in the study
led by Brun et al. (2004). However, in all these simu-
lations, the mean toroidal energy prevails in the mean
energy, whereas in our models, the predominant term is
the mean poloidal energy. In summary, the decrease of
the mean field energy is coherent with results obtained
by Gregory et al. (2012) in which the magnetic field be-
comes less axisymmetric and more complex as the star
ages along the PMS phase.

5.2. Topology of the magnetic fields

In the previous section, we have studied the evolution
of the amplitude of the magnetic field during the PMS
phase and found that ME mostly grows. We will now
focus on the topology of these fields. We can express the
energy of the magnetic field at the surface MEsurf as:

MEsurf =
∑
`,m

MEm` Y`,m (17)

and we can define:
ME` =

∑
m

MEm` ,∀`

MEm =
∑
`

MEm` ,∀m.
(18)

We define two ratios that characterize the topology
(Christensen & Aubert 2006): the dipole field strength:

fdip =
ME1∑12
`=1 ME`

(19)

and the ratio between the axisymmetric and non axisym-
metric field:

Raxi =
ME0∑

m>0 MEm
. (20)

As in Schrinner et al. (2012), we also defined the local
Rossby number of our simulations

Ro,l = Ro
¯̀

π
(21)

where

¯̀=
∑
`

`
〈(v)` · (v)`〉
〈v · v〉

(22)

is the mean harmonic degree, with 〈·〉 the average over
time and radius.

Increasing radiative core and rotation rate lead to a
larger mean harmonic degree (see Figure 16). This re-
sult can be understood by considering the geometrical
change of the convective zone, e.g. the smaller aspect
ratio that favors larger `. As seen in section 2.2.2, the
Rossby number also grows as the star evolves along the
PMS phase. This result may seem counterintuitive since

Fig. 16.— Evolution of the magnetic field topology with re-
spect to the local Rossby number of our simulations. Top: Mean
harmonic degree evolution, as the local Rossby number grows, ¯̀

p
grows. Middle: Dipole field strength decreases as the local Rossby
number increases. Bottom: The amplitude of the axisymmetric
field decreases with respect to the non axisymmetric one as the
star evolves along the PMS evolutionary track.
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as faster rotation should lead to smaller Rossby number.
However in our cases, rotation rate is not the only stel-
lar parameter to change: the thickness of the convective
envelop decreases along the PMS phase. By looking at
the product Ω0D, we see that it decreases as the star
ages. Hence it is logical that the Rossby number in-
creases as the star evolves along the PMS phase. As the
mean harmonic degree and the Rossby number grow, the
local Rossby number increases as the star is aging. By
plotting fdip as a function of the local Rossby number,
Schrinner et al. (2012) noted a transition between the
dipolar and multipolar mode at Rco,l = 0.1. The local
Rossby number of our simulations are around this tran-
sition value. We also observe a transition in the topol-
ogy evolution of the magnetic field along the PMS phase.
As in Schrinner et al. (2012), dipolar components of the
magnetic field are weak when Ro,l > 0.1. These compo-
nents are bigger when Ro,l < 0.1 even if the transition
is less strong than the one observed by Schrinner. The
amplitude of the axisymmetric part of the magnetic field
also decreases as the star evolves along the PMS phase.
We see a transition between the fully convective model,
with Raxi ' 0.35, the two models with a small radiative
core, with Raxi ' 0.2, and the two simulations with a
big radiative core Raxi < 0.05. These observations are
coherent with the different behavior studied by Gregory
et al. (2012). By looking to the dipolar field strength, we
also find similarities with this study since dipolar com-
ponents of the fully convective models are greater than
in the other simulations. However it has to be tempered
since they are still quite weak contrary to what was ob-
served in the study of Gregory et al. (2012). Moreover the
dipolar field strength is quite different between the two
models with a small core even if they are both supposed
to have weak dipolar components. Two different quanti-
ties P and M were proposed by Raedler et al. (1990) to
study the parity and non-axisymmetry of the field

P =
ES − EA
ES + EA

M = 1− E0

E

(23)

where E is the magnetic energy, E0 the magnetic energy
contained in the m = 0 modes, ES the magnetic energy
in the even ` + m modes and EA the magnetic energy
in the odd ` + m modes. M can easily be linked to the
Raxi quantity by M = 1

1+Raxi
. P evaluates the dominant

magnetic field parity in the dynamo solution. P fluctu-
ates around the value of zero (indicating exact field parity
distribution) with min/max value being around -0.2 to
0.2 most of the time. Our dynamo being non linear, it is
no surprises that both family are equally excited (Tobias
1997; DeRosa et al. 2012).

5.3. Mean field generation

In order to better understand the dynamics of the
magnetic fields, we now turn to the generation of mean
field. To study the generation of both mean toroidal and
poloidal magnetic fields, we use the decomposition of the
induction equation 7 developed by Brown et al. (2011).
Thus we get the different contributions of shear, advec-

tion and compression for the magnetic field production:

∂〈B〉
∂t

= PMS+PFS+PMA+PFA+PMC+PFC+PMD (24)

with PMS representing the production of field by mean
shear, PFS production by fluctuating shear, PMA advec-
tion by mean flows, PFA advection by fluctuating flows,
PMC amplification due to the compressibility of mean
flows, PFC amplification due to the compressibility of
fluctuating flows and PMD the ohmic diffusion of the
mean fields:

PMS = (〈B〉 · ∇) 〈v〉,

PFS = 〈(B′ · ∇) v′〉,

PMA = − (〈v〉 · ∇) 〈B〉,

PFA = 〈(v′ · ∇) B′〉,

PMC = (〈vr〉〈B〉)
∂

∂r
lnρ̄,

PFC = (〈v′rB′〉)
∂

∂r
lnρ̄,

PMD = −∇× (η∇× 〈B〉).

(25)

The expression can be directly used to study the im-
portance of the different terms in the generation of the
toroidal magnetic field. The time integral of this equa-
tion for the longitudinal component gives

∆〈Bϕ〉 =

∫ t4

t1

dt (PMS + PFS + PMA + PFA + PMC + PFC + PMD) |ϕ

(26)
In these models, over the seven physical processes that

contribute to the toroidal mean field generation the mean
compression has a negligible role and the mean advec-
tion and the fluctuating compression have small contribu-
tions. Thus in the following analysis we will neglect the
mean advection and the mean compression terms since
they are negligible in all our simulations. The result
of this calculation is shown in Figure 17 for the C00m
model, where t1 and t4 are taken at the maximum and
minimum of the dipole component of the magnetic field
(see Figure 21). Therefore, the interval [t1; t4] captures
one magnetic cycle and one magnetic polarity reversal
(see Figure 20). In this figure, we notice that Bϕ is
mostly created by the mean shear and destroyed by the
mean diffusion.

To have a better understanding of the generation of the
toroidal field and to compare the different models, these
generation terms are integrated over radius and latitude
and we look at the toroidal mean energy:

dTME

dt
=

∫
V

dV
∂

∂t

〈B2
ϕ〉

8π

=

∫
V

dV
〈Bϕ〉
4π
· (PMS + PFS + PMA + PFA

+PMC + PFC + PMD) |ϕ.
(27)

The balance of time-averaged generation terms for the
toroidal energy is shown in Figure 18 for all cases. We
notice that the toroidal magnetic energy is sustained by
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Fig. 17.— Balance between the variation of Bϕ and generation terms of the toroidal magnetic field for the C00m simulation. The first
2D plot shows the variation of Bϕ : ∆Bϕ = (Bϕ,2 −Bϕ,1). The other plots are the generation terms integrated between t1 and t4 (see
Figure 20). All the terms are reported in G/s.

Fig. 18.— Balance of time-averaged generation terms of the
toroidal magnetic energy reported in %. The toroidal field is main-
tained thanks to the fluctuating compression and to the shear ac-
tion, both mean and fluctuating. It is destroyed by the fluctu-
ating advection and mean diffusion terms. The mean advection
and mean compression terms are not represented since they are
negligible compared to the other terms.

the fluctuating compression term and by the action of
both mean and fluctuating shear. It is annihilate by
the mean diffusion and fluctuating advection terms. The
mean advection and mean compression terms are neg-
ligible compared to the other contributions. The mean
diffusion has the main contribution to the destruction of
the toroidal field. The fluctuating advection also coun-
teracts the generation of ME, with a smaller contribu-
tion. The generation of toroidal field can be split in two
quasi-constant contributions : the fluctuating compres-
sion (FC) and the shear (FS + MS). As the star ages, the
contribution of the mean shear increases while the one of
the fluctuating shear decreases, except for the last sim-
ulation where it is almost the same. This tells us about
the nature of the mean field generation, shear remains
critical in these models.

The production of mean poloidal field is simpler to
understand if we represent 〈BP 〉 by its vector potential
〈Aϕ〉:

〈BP 〉 = ∇× 〈Aϕ〉ϕ̂. (28)

By uncurling the induction equation 7 once, we obtain

the evolution of the potential vector:

∂〈Aϕ〉
∂t

= 〈v ×B〉|ϕ − η∇× 〈B〉|ϕ . (29)

The first term of the equation is the electromotive force
(EMF) coming from the coupling of internal flows and
magnetic fields and the second is the ohmic diffusion.
These terms can also be decomposed into mean and fluc-
tuating components:

EMI = 〈vr〉〈Bθ〉 − 〈vθ〉〈Br〉

EFI = 〈v′rB′θ〉 − 〈v′θB′r〉

EMD = −η 1

r

(
∂

∂r
(r〈Bθ〉)−

∂〈Br〉
∂θ

)
.

(30)

This equation is illustrated for the C00m case by Figure
19. The main contribution to the generation of poloidal
field is the fluctuating EMF and it will be studied in
detail in the following section through the analysis of the
α− Ω effect.

5.4. Assessing the relative contribution of α− Ω
dynamo effects

The generation of poloidal magnetic field is dominated
by the action of the fluctuating EMF: EFI = E ′ = 〈v′ ×
B′〉. This process can also be interpreted through the
α-effect approximation which is a first order expansion
of E ′ around the mean magnetic field and its gradient:

〈E ′〉i = αij〈B〉j +βijk∇〈B〉+O
(
∂〈B〉/∂t,∇2〈B〉

)
(31)

with αij a rank-two pseudo-vector and βijk a rank-three
tensor. In the following, we will neglect the β term.
However, this will increase the systematic error when
estimating the α term. Thus a single-value decompo-
sition (SVD) including the β-effect has been calculated
in order to provide a lower-bound on the systematic error
(Augustson et al. 2015). In the following analysis, α has
been decomposed into its symmetric and antisymmetric
components

α〈B〉 = αS〈B〉+ γ × 〈B〉 (32)

with

αS =

[
α(rr) α(rθ) α(rϕ)

α(rθ) α(θθ) α(θϕ)

α(rϕ) α(θϕ) α(ϕϕ)

]
and γ =

[
γr
γθ
γϕ

]
. (33)
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Fig. 19.— Time evolution the vector potential Aϕ through one magnetic cycle of the C00m model. The three plot on the left show the
vector potential at two different times t1 and t4 (see Figure 20), and their difference ∆Aϕ = 〈Aϕ,2〉 − 〈Aϕ,1〉. The mid plot stands for the
sum of the right-hand side. The components of the sum are shown individually with the mean EMF, the fluctuating EMF and the resistive
diffusion. e left 2D plot shows the variation of Bϕ : ∆Aϕ = (Aϕ,2 −Aϕ,1) /(t4 − t1) in G.cm/s.

In our study, we will focus on the efficiency of the α-
effect and on the characterization of our dynamo through
the relative influence of its regenerating terms. At first,
one interesting measure of these dynamo is to quantify
the capacity of the convective flows to regenerate mean
magnetic fields. This can be evaluated by finding the
average magnitude of an estimated α-effect relative to
the rms value of the non axisymmetric velocity field

E '
〈

α

vrms

〉
=

3

2(r3
2 − r3

1)
×
∑
i,j

∫∫
drdθr2 sin θ

√
αijαij

{v′ · v′}
(34)

where {v′ ·v′} is the sum of the diagonal elements of the
Reynolds stress tensor averaged over time and over all
longitudes. If we want to refine the analysis, we can use
the equation 34 to provide a measure of the importance
of each component of α as

εij =
Eij
E

' 1

E

〈
αij
vrms

〉
=

3

2E(r3
2 − r3

1)

∫∫
drdθr2 sin θ

√
αijαij

{v′ · v′}

=

[
ε(rr) ε(rθ) ε(rϕ)

εγϕ ε(θθ) ε(θϕ)

εγθ εγr ε(ϕϕ)

]
(35)

with ε(xx) =
α(xx)

E
and Eγx =

γx
E

. By calculating this

matrix, see Table 8, we notice that for the antisymmetric
part γ, the predominant term is always γϕ that impacts
the poloidal component of the magnetic field. γr and γθ
have the same order of magnitude and are between 3 and
18 times smaller than γϕ. By looking at the symmetric
part αS, we see the same trend. The predominant term
is either α(rr) or α(θθ) which both act on the poloidal
component of the magnetic field and the smallest term
is always α(ϕϕ) which is at least two times smaller than
the predominant term. Thus we may conclude that the
relative influence of the poloidal field regeneration by the
EMF is more important than the toroidal field regener-
ation. We can quantify this relative influence αP/αϕ:

αP

αϕ
=

3

2(r3
2 − r3

1)
×
∫∫

drdθr2 sin θ

∣∣∣∣ 〈BP〉 · ∇ × 〈E ′〉
〈Bϕϕ̂ · ∇ × 〈E ′〉

∣∣∣∣ .
(36)

With Table 8, we confirm the predominance of the

TABLE 8
α− Ω effect

α tensor Ω/αϕ αP /αϕ

0.104 0.114 0.130

C00m 0.114 0.127 0.147 4.20 12.5

0.082 0.086 0.095

0.133 0.129 0.115

C20m 0.120 0.116 0.124 2.08 10.8

0.084 0.087 0.073

0.203 0.126 0.103

C40m 0.149 0.097 0.098 3.42 19.1

0.085 0.070 0.069

0.279 0.137 0.061

C60m 0.194 0.102 0.056 4.39 21.2

0.077 0.053 0.040

0.188 0.155 0.032

C70m 0.099 0.084 0.024 1.54 9.19

0.211 0.171 0.035

Note: Results of the dynamo analysis on our PMS models. The
first column represents the α tensor with its symmetric: αs (white
background) and antisymmetric: γ (gray background) portions (see
Eq 32). The middle column gives the relative importance of the
Ω-effect to the α-effect for the regeneration of the toroidal field.
The last column quantifies the ratio of the α-effect used for the
regeneration of the poloidal magnetic field to the one used for the
regeneration of the toroidal field.

poloidal field regeneration over the toroidal field regen-
eration for all our models. This quantity also enables us
to see the evolution of this relative influence over all our
models. The influence of the poloidal part of α in the
C20m model is smaller than in the C00m model. This
decrease cannot be due to the rotation rate since the two
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models have the same stellar rotation rate. The main
difference between these models is the size and geome-
try of the convective envelope. In the following models,
with a decrease in size of the convective envelope and
an increase of the rotation rate, a trend appears with an
increase of the weight of the poloidal part in α as the
star evolves along the PMS phase. The C70m model be-
haves differently because of a change of trend in L∗ that
impacts vrms.

As seen in equation 24, the PMS term plays an impor-
tant contribution for the generation of toroidal magnetic
field. This term, called the Ω-effect, represents the ac-
tion of mean shearing, i.e. differential rotation, on the
poloidal magnetic field:

PMS = r sin θ 〈BP 〉 · ∇Ω. (37)

In mean-field theory, the regeneration of the toroidal
field can both be due to the α-effect, coming from the
fluctuating EMF, and to the Ω effect that acts on the
poloidal field through differential rotation. In all our
models, we note that the regeneration of 〈Bϕ〉 by the α-
effect is small, compared to the one of Bpol. Therefore,
we now want to measure the relative influence of the Ω-
effect to that of the α-effect, since the toroidal magnetic
field can be regenerated through both effects:

Ω

αϕ
=

3

2(r3
2 − r3

1)
×
∫∫

drdθr2 sin θ

∣∣∣∣r sin θ〈Bϕ〉〈BP 〉 · ∇〈Ω〉
〈Bϕ〉ϕ̂ · ∇ × 〈E ′〉

∣∣∣∣ .
(38)

As the rotation rate remains constant and the convec-
tive envelope size decreases, the influence of the Ω-effect
decreases with respect to the α-effect. In the following
models, which have a growing radiative core and an in-
creasing rotation rate, the influence of Ω-effect increases
with respect to αϕ. The poloidal α effect also becomes
more and more predominant with respect to αϕ. This
can be understood as the Ω-effect is strongly link to the
differential rotation and as we see in section 5.1 that the
contrast in differential rotation grows as the star evolves
along the PMS phase. The C70m model behaves differ-
ently. Stellar luminosity increases in this model, whereas
it decreases in the others. As luminosity increases, we
increases both viscous and magnetic diffusivities to keep
consistent Reynolds numbers. This increasing magnetic
diffusivity possibly explains the behavior of the C70m
model.

5.5. Time evolution and magnetic cycles

Time evolution of the magnetic field through the PMS
phase, as shown in the time-latitude plot in Figure 13,
clearly possesses a cyclic behavior for three out of five
cases. For illustrative purposes, we will now discuss one
of these cyclic dynamo cases, namely the fully convective
one. In Figure 20, we display a zoomed in version of
its time-latitude diagram along with meridional cut for
specific times samples. We notice that we have a dynamo
cycle of almost 11 years, hence commensurable with what
we know about the typical length of magnetic cycles in
solar-like stars. We also notice a beginning of reversal at
the end of the evolution of the second model, the C20m
one, and we decide to continue the computation of this
model and we see that a cycling dynamo appears.

The temporal evolution of the dipole, quadrupole and
octupole moments of the magnetic field can by measured

Fig. 20.— Time evolution of the toroidal magnetic field at the
surface of the C00m model. The origin of time (t=0) in the figure
corresponds to the beginning of the C00m simulation. Cycling
period is almost 11 years so a magnetic energy cycle of 5.5 years.
Azimuthal averages of both toroidal and poloidal magnetic fields
are chosen to show the evolution and reversal of magnetic field.
At t1, Bpol is almost completely positive. Reversal begins at t2
with increasing negative values in Bpol and decreasing patterns
amplitude for Btor. At t3, negative patterns of Btor mostly vanish
and Bpol has opposite signs in the two hemispheres. At t4, the
reversal is achieved with a fully negative Bpol and patterns of Btor
have the opposite signs of those observed at t1. The toroidal field
in shown in color, with red for positive values and blue for negative
ones. Contours of poloidal field are over plotted with solid line for
positive values and dashed line for negative ones. This poloidal
field is extrapolated outside the star using the PFSS model which
neglects electrical currents in the corona. The lower boundary is
given by our MHD simulations and the upper boundary, modeling
the effect on the field of the outflowing solar wind, is characterized
by an electric current source surface where the field lines are forced
to be radial. In this extrapolation we used a source surface radius
of rss ' 2.5R∗ (see Schrijver et al. (2003)).
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Fig. 21.— The amplitudes D, Q and O are shown for the cycling
models : C00m, C20m and C70m. The origin of time (t=0) in the
figures correspond to the beginning of each MHD simulation. We
note an increase of the cycle period length. No clear phasing rela-
tionship between the three components can be established, except
for the C20m case that show that symmetric and anti-symmetric
dynamo mode are in opposition of phase. We also notice that in
the C70m model there is no dipole reversal, even if it presents a
cycling behavior.

through the amplitudes of the m = 0 mode of the radial
component of the magnetic field Br. These amplitudes
are calculated by the expressions

D =

√
3

4π

∫
Br cos θ sin θdθdφ,

Q =
1

2

√
5

4π

∫
Br
(
3 cos2 θ − 1

)
sin θdθdφ,

O =
1

2

√
7

4π

∫
Br
(
5 cos3 θ − 3 cos θ

)
sin θdθdφ,

(39)

with the integral solid angle is at a fixed radius. The
amplitudes D, Q and O are shown for both models in
Figure 21. The measurements are done at 96% of rtop.

As seen above, our simulations show equatorward
propagation of the magnetic field (see Figure 13). In
three of those models, C00m, C20m and C70m, we even
see dynamo cycles. The equatorward propagation in
kinematic α − Ω dynamo is generally attributed to the
propagation of a dynamo wave. In this theory, the prop-
agation direction of the dynamo wave is given by the
Parker-Yoshimura rule (Parker 1955; Yoshimura 1975)

S = −r sin θᾱêϕ ×∇
Ω

Ω0
(40)

with ᾱ = −τ0〈v ·$〉/3, τ0 is the convective overturn-
ing time and $ = ∇ × v the vorticity and 〈·〉 is the
azimuthal average. To further illustrate the nature of
dynamo action realized in our simulations, we calculated
Sθ for one of the models with a cycle dynamo : the fully
convective one. In Figure 22, the Parker-Yoshimura rule
is respected as Sθ < 0 (resp. Sθ > 0) in the northern
(resp. southern) hemisphere implies that the dynamo

wave propagate from the equator to the poles at low lat-
itudes, as in the butterfly diagram displayed in Figure 20
for the same fully convective case.

5.6. Magnetic field evolution in the radiative zone

Observations conducted on the activity of massive stars
have shown that some of these stars possess a strong sur-
face magnetic fields (Babcock 1947; Mathys et al. 2001;
Donati et al. 2006; Wickramasinghe & Ferrario 2005;
Beuermann et al. 2007; Becker et al. 2003; Aurière et al.
2007). However these fields are drastically different of
those observed in convective stars. None of these have
very small scales fields, they all presented strong low l
components (dipole, quadrupole or octupole). Moreover
none of these non convective stars have differential ro-
tation which is mostly the case of our radiative cores.
Hence the lack of ingredients for a dynamo generation
leads us to infer, as Braithwaite (2008), that these mag-
netic fields in radiative zone are fossil fields, i.e. stable
fields that evolves on diffusive time scales. These fields
are very sensitive to instabilities and many of them are
unstable and disappears quickly. This is coherent with
observations since many massive stars do not seem to
possess surface magnetic field. These instabilities were
studied by Tayler (1973) and Markey & Tayler (1973)
which showed that both purely poloidal and toroidal
magnetic fields cannot be stable : we need a mixed con-
figuration poloidal-toroidal. The fossil fields in early stel-
lar evolution have been studied by Arlt (2009). Braith-
waite (2009) gave a quantitative upper limit to that sta-
ble mixed configuration : the poloidal magnetic energy
must be less that 80% of the total magnetic energy.

Thus we use the decomposition of the magnetic field:

ME = MEpol + MEtor. (41)

This decomposition can be analyzed in both convective
and radiative zones (as shown in Table 9). These val-
ues are taken averaged over the last 400 days of each
simulations. Hence each final magnetic field fulfill the
Braithwaite criteria: MEpol

RZ < 0.8MERZ . We also no-
tice that the magnetic energy is mostly in equipartition
between the poloidal and the toroidal parts in the radia-
tive core, but also in the convective envelop. Hence, each
time that the radiative core grows from a radius rbcz,n to
rbcz,n+1, the magnetic field “introduced” by this change
in size already fulfill the stability criteria. Since the relax-
ation does not change much the partition of B between
poloidal and toroidal, the magnetic field logically fulfill
the stability criteria. By looking at the table of mag-
netic energies (table 9), we notice that this limit is ac-
tually never reaches (when our models are relaxed). We
decided to track the ratio Bpol/Btor all along our simu-
lations to see if this stability criteria was always fulfilled.
Since MEpol/ME must be lower than 0.8, we are looking
if Bpol/Btor < 2. Figure 23 shows the evolution of that
ratio along the PMS phase. Hence we notice that even
during the transient time between two different internal
structures, the stability criteria defined by Braithwaite
is fulfilled. As we propagate the magnetic field from one
stellar structure to the following one, we need to check
that we compute the MHD simulation long enough to
enable B to relax in the radiative core. Relaxation takes
place on several Alfvén times ta = va/DRZ where DRZ
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Fig. 22.— Latitudinal component of the propagation direction of a dynamo wave Sθ (see equation 40), for the C00m model. Red contours
denote positive southward direction. The origin of time (t=0) in the figure corresponds to the beginning of the C00m model. Overplotted
in white are isocontours of 〈Bϕ〉 at 1 and 2 kG, with solid contours being of positive polarity and dashed of negative polarity. We note the
good agreement of the Parker-Yoshimura rule with dynamo branch shown in the butterfly diagram of Figure 20.

TABLE 9
Magnetic energy decomposition

Case EMRZ MERZ MEpol
RZ MEtor

RZ MECZ MEpol
CZ MEtor

CZ

(1032 erg) (104 erg.cm−3) (104 erg.cm−3) (104 erg.cm−3) (105 erg.cm−3) (105 erg.cm−3) (105 erg.cm−3)

C00m – – – – 5.62 3.05 (54.3%) 2.57 (45.7%)
C20m 2.50 3.40 1.87 (55.15%) 1.52 (44.86%) 7.49 3.59 (47.8%) 3.91 (52.2%)
C40m 22.7 8.46 2.72 (32.13%) 5.74 (67.87%) 10.7 5.60 (52.1%) 5.14 (47.9%)
C60m 121 33.7 19.7 (58.48%) 14.0 (41.52%) 21.0 11.6 (55.5%) 9.29 (44.5%)
C70m 41.3 8.6 6.34 (73.5%) 2.29 (26.5%) 8.8 4.68 (53.2%) 4.12 (46.8%)

Note: The first column gives the global magnetic energy (EM) in the radiative zone (in erg). The following columns
show energy densities with the magnetic energy (ME) divided into two its toroidal and poloidal part (MEtor, MEpol).
All energy densities are averaged over a period of 400 days and reported in erg cm−3.

Fig. 23.— Evolution of the ratio Bpol/Btor over the PMS evolu-
tionary track. The origin of time (t=0) in the figure corresponds
to the injection the magnetic field in the C20m model.

is a characteristic length scale of the relaxation in the ra-
diative zone. By looking at the internal structure of the
model n+ 1, we have three different areas. r > rbcz,n+1

defines the convective envelop of the model. r < rbcz,n+1

is the radiative core of the simulation. This zone can be
split in two : r < rbcz,n that was already radiative in
the previous model and rbcz,n < r < rbcz,n+1 that was

TABLE 10
Alfvén time for the radiative zone

Case va Dn ta tmodel

(cm.s−1) 1010 cm (days) (days) (ta)

C20m 181 2.6 1660 8062 4.87
C40m 194 2 1190 7875 6.61
C60m 202 1.47 838 2454 2.93
C70m 461 0.69 1320 2555 1.94

Note: Relaxation time in the radiative zone. The first column
gives the Alfvén speed in the core of our simulations. The second
one shows the characteristic length scale of the relaxation. The
Alfvén time is defined by ta = va/DRZ . The last columns shows
the computational time of the MHD models in days and in Alfvén
time.

convective in the previous model and becomes radiative
in this model. In the first area, the relaxation process
occurred in previous models as it was already radiative.
The relaxation process that we look at in the n+1 model
thus occurs in the portion limited by the radii : rbcz,n
and rbcz,n+1. That is why we choose to define Dn as
Dn = rbcz,n+1 − rbcz,n rather than as the radius of the
radiative zone of the model. The values of Alfvén times
for our simulations are given in Table 10. We see that
each MHD model is evolved over few Alfvén times to
insure the relaxation of the magnetic field in the radia-
tive zone. We conclude that interestingly dynamo action
tends to generate mixed fields whose properties satisfy
stability criteria in stratified radiative core. This result
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on the stability of the fossil field left over by dynamo ac-
tion as the convective envelope becomes shallower along
the PMS phase is a direct outcome of our set of simula-
tions and could not be easily anticipated. It has direct
consequences on the geometry of fossil field that can be
expected in solar-like star’s radiative core as stable mixed
poloidal-toroidal configurations should be favored.

6. DISCUSSION AND CONCLUSION

During the PMS phase, between the protostellar phase
and the ZAMS, the stellar radius decreases due to gravi-
tational contraction. As the star contracts, internal tem-
perature and pressure increase, opacity drops in the stel-
lar core and a radiative zone appears and grows within
the star. Moreover, the stellar contraction causes an in-
crease of the rotation rate due to angular momentum con-
servation. Hence we expect the star’s dynamical prop-
erties to vary significantly and these variations are key
to characterize. In order to do so, we have developed a
series of 3D MHD simulations of stellar convective dy-
namo. To make this study more realistic, we used to
setup the spherically symmetric background state of our
3D models, radial profiles obtained from 1D stellar evolu-
tion model at various stages along the PMS evolutionary
track. We choose five different models that represent
the star at specific ages of the PMS phase with different
rotation rates and radiative radii. At first, we run hy-
drodynamical 3D simulations of these models in order to
equilibrate internal flows and coupling between the ra-
diative core and the convective envelop. Then we inject
a magnetic field into the fully convective model and once
the MHD simulation is equilibrated we inject the result-
ing magnetic field into the following model. We compute
all the MHD simulations by propagating the magnetic
field into all HD models.

Our five MHD simulations show the mutual influence of
the internal magnetic field and internal flows as the star
evolves along the PMS phase. As seen in section 4, the
introduction of the magnetic field in the hydrodynamical
models leads to important modifications of the internal
mean flows and the convective patterns. As the differ-
ential rotation profiles are quenched by the influence of
the Maxwell stresses, the radial convective patterns are
larger, since they are less sheared. The internal magnetic
field also has an notable impact on the angular momen-
tum transport since there are two additional contribu-
tions : the Maxwell stresses and the large scale magnetic
torques. Indeed, in hydrodynamical models, the inward
propagation of the angular momentum is due to viscous
diffusion whereas in the MHD simulation this contribu-
tion becomes small, given the weak differential rotation
present in these MHD simulations, and the inward prop-
agation is sustained by the large scale magnetic torques
and Maxwell stresses.

As the star ages along the PMS evolutionary track,
we analyze the evolution of the magnetic energy. The
proportion of mean field energy (TME + PME) decreases
strongly from 47% to 6% of the total magnetic energy.
In all models, the poloidal mean energy prevails on the
toroidal mean energy. The decrease of the mean energy
is coherent with results found by Gregory et al. (2012) in
which the magnetic field is less axisymmetric and more
complex as the radiative core is bigger.

As the magnetic field is propagated through the PMS

models, we study the evolution of its topology and am-
plitude as well as its generation through the α−Ω effect.
At first, we notice that in both zones, either convective
or radiative, the magnetic energy increases as the star
ages. In our five MHD simulations, we notice that the
topology of the magnetic field changes strongly as the
star ages. Since we follow the evolutionary path of a
solar-like star, both rotation rate and aspect ratio of the
convective envelop change as the star evolves along the
PMS phase. The specific influence of each parameter is
not always easy to disentangle in our study. The influ-
ence of internal structure was studied by Gregory et al.
(2012). The results of this study show that as the ra-
diative core becomes bigger the dipole components drop
and the magnetic field becomes more and more complex.
These properties are coherent with the results obtained
with our MHD simulations with the ratio Baxi/Bnon,axi
dropping from 0.61 to 0.18 and the dipole field strength
decreasing from 0.12 to 0.042. By plotting these two
quantities as a function of the Rossby number, we want
to analyze the influence of rotation on magnetic topology.
Rossby numbers of our simulations are quite close to the
transition value Ro = 0.1 found in several studies (Piz-
zolato et al. 2003; Wright et al. 2011; Reiners et al. 2014;
Schrinner et al. 2012). We notice that fdip is smaller
when Ro < 0.1. For small Rossby numbers, the dipole
field strength increases slightly but we need more simu-
lations to know if this value is the upper limit or if for
lower Rossby number fdip continues to grow and shows
that Ro = 0.1 is a sharp transition.

The generation of the mean magnetic field shows that
as the convective zone becomes shallower and the rota-
tion rate increases, the Ω effect becomes predominant
in the generation of the mean toroidal magnetic field.
Moreover the α-effect tends to generate more poloidal
field than toroidal one. Hence, in each model, we see an
α − Ω dynamo. Three out of our five MHD simulations
display a magnetic cycle. In all cyclic cases, the time
latitude diagram of the longitudinally averaged toroidal
magnetic field shows a clear poleward branch starting
from low latitude (see Figure 20). This magnetic field
propagation is also compatible with the α − Ω dynamo
concept as it satisfies Parker-Yoshimura rule (see Figure
22).

As the radiative zone grows in the star, we observe
that, in all models, the magnetic field in the core, left
over by the convective dynamo, is stable regarding the
limit given by Braithwaite (2008): Epol/Etot < 0.8. The
magnetic field in the radiative core of the star originates
from the relaxation of the dynamo field coming from the
previous stellar evolution phase in our sequence of mod-
els. By looking at this dynamo field, we notice, that
in all convection zones, the magnetic field that comes
from the dynamo action also fulfill the stability criteria
Epol/Etot < 0.8 even if this has no obvious consequence
in that zone. It seems that the relaxation of the field
preserves this feature of the field and explains that all
relaxed fields in radiative core are stable for the stability
criteria.

The global properties of the magnetic fields we obtain
in our study also have direct consequences for the coro-
nae of PMS stars. We have computed the change of
the Alfvén radius (i.e. the radius where the stellar wind
decouples from the star) that such topological and ro-
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tation state implies, following the prescription described
in Réville et al. (2015b). We find that the Alfvén radius
shrinks from about 33 R� to 10 R�. This is in good qual-
itative agreement with the recent work of Réville et al.
(2016) who computed realistic 3D stellar wind models
along the evolutionary tracks of a solar mass star us-
ing spectro-polarimetric maps from Folsom et al. (2016).
We intend in the near future to use the magnetic field
coming out of our dynamo simulations to compute sim-
ilar 3D wind solutions during the PMS phase. This will
allow us to assess the loss of mass and angular momen-
tum, that must also vary significantly given the large
change of Alfvén radius we have identified. One can also
guess that the braking due to the stellar wind would be
less efficient for more complex magnetic topologies as
discussed in Brown (2014). However in the evolution-
ary phase studied in this article, i.e. earlier than the
ZAMS, stellar contraction is the key driver of the angu-
lar momentum evolution, except, of course, during the
disk-locking phase. For that earlier phase, various sce-
narii have been proposed (see Zanni & Ferreira 2013),
and one can safely say that more compact magnetic ge-
ometry will lead to a different coupling to the disk than
with a simple purely dipolar magnetic field geometry.

The 3D simulations studied in this paper, five HD pro-
genitors and five MHD dynamo simulations, are an ide-
alistic representation of the evolution of solar-like stars
along the PMS phase. For instance, the turbulence de-
gree in our numerical models is far from reaching that
of a real star. We try to keep a comparable degree of
turbulence in all our models while taking into account
computational constraints (each simulation has required
on average 1 Mh node hours). One could also consider a
systematic parametric study of each model by varying for
instance, in the simulations, their Reynolds and Prandlt
numbers to better assess their sensitivity to parameter
change. Still we are confident that trends presented in
this work are robust as we have shown that there are in
qualitative agreement with observations and compatible
with previous numerical studies of stellar dynamos. In
this study, we only propagate the magnetic field from one
model to another. This leads to an important transient
phase since this magnetic field and the global flows have

to adapt to each other. One future study could be to
propagate also global flows between the different mod-
els. Nevertheless, one challenge of this study is its serial
aspect : before computing the model n, we need to reach
an equilibrium state, in the statistically stationary sense,
for the magnetohydrodynamical model n− 1. Indeed, as
already stated, we need the magnetic field of the simu-
lation n− 1 to initialize the model n. This serial aspect
makes this study complex to compute as each model take
several months to settle down. One improvement to this
analysis would be to increase the number of models and
make the gap between the different rotation rates and
radiative radii smaller to have a smoother evolution of B
and trends. This may be done by changing our way of
simulating the stellar evolution.

It is important to notice that in this study, we choose
our models to follow an astrophysical path along the
PMS phase. A logical follow-up is therefore to apply
this analysis to the evolution of solar-like stars along the
following step of stellar evolution, i.e. the main sequence.
In that study the main parameter will be the decrease of
the rotation rate as the star is braked by the solar wind
and the internal stellar structure of the star is fixed dur-
ing this evolutionary phase. An additional study would
be to study the impact of stellar structure with a fixed
rotation rate. We have started doing such studies and
their results will be reported in future communications.

First we wish to thank N. Featherstone for propos-
ing the original idea that has lead to this project. We
thank R.Arlt for helpful discussions. We wish also to
thank A. Palacios and L. Amard for providing the 1D
stellar evolution and structure models used as input to
setup our 3D ASH simulations. Special thanks to K.
Augustson for providing some of the analysis routines
used in section 5.3. We acknowledge A. Strugarek for
the 3D visualization of the C40 and C40m model. We
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