MAGIC observations of the microquasar V404 Cygni during the 2015 outburst

To cite this version:

HAL Id: cea-01556871
https://hal-cea.archives-ouvertes.fr/cea-01556871
Submitted on 5 Jul 2017

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
MAGIC observations of the microquasar V404 Cygni during the 2015 outburst

The microquasar V404 Cygni underwent a series of outbursts in 2015, June 15-31, during which its flux in hard X-rays (20-40 keV) reached about 40 times the Crab Nebula flux. Because of the exceptional interest of the flaring activity from this source, observations at several wavelengths were conducted. The MAGIC telescopes, triggered by the INTEGRAL alerts, followed-up the flaring source for several nights during the period June 18-27, for more than 10 hours. One hour of observation was conducted simultaneously to a giant 22 GHz radio flare and a hint of signal at GeV energies seen by Fermi-LAT. The MAGIC observations did not show significant emission in any of the analysed time intervals. The derived flux upper limit, in the energy range 200–1250 GeV, is \(4.8 \times 10^{-12}\) ph cm\(^{-2}\) s\(^{-1}\). We estimate the gamma-ray opacity during the flaring period, which along with our non-detection, points to an inefficient acceleration in the V404 Cyg jets if VHE emitter is located further than \(1 \times 10^{10}\) cm from the compact object.

Key words: gamma-rays: general – X-rays: binaries – stars: individual: V404 Cygni (V404 Cyg)

1 INTRODUCTION

The microquasar V404 Cygni (V404 Cyg), located at a parallax distance of 2.39±0.14 kpc (Miller-Jones et al. 2009), is a binary system of an accreting stellar-mass black hole from a companion star. The black hole mass estimation ranges from about 8 to 15 M\(_{\odot}\), while the companion star mass is \(0.7^{+0.3}_{-0.2}\) M\(_{\odot}\) (Casares & Charles 1994; Khargharia et al. 2010; Shahbaz et al. 1994). The system inclination angle is \(67^{+3}_{-1}\) (Shahbaz et al. 1994; Khargharia et al. 2010) and the system orbital period is 6.5 days (Casares & Charles 1994). This low-mass X-ray binary (LMXB) showed at least four periods of outbursting activity: the one that led to its discovery in 1989 detected by the Ginga X-ray satellite (Makino et al. 1989), two previous ones in 1938 and 1956 observed in optical and later associated with V404 Cyg (Richter 1989), and the latest in 2015.

In June 2015, the system underwent an exceptional flaring episode. From the 15th to the end of June the bursting activity was registered by several hard X-ray satellites, like Swift and INTEGRAL (Barthelmy et al. 2015; Ferrigno et al. 2015). It reached a flux about 40 times larger than the Crab Nebula one in the 20–40 keV energy band (Rodriguez et al. 2015). The alerts from these instruments triggered follow-up observations from many other instruments from radio (Trushkin et al. 2015b; Mooley et al. 2015) to very high energies (Archer et al. 2016). Recently Siegert et al. (2016) claimed the detection of the 511 keV gamma signal from electron-positron annihilation in the June V404 Cyg outburst. In agreement with the models, the variability of the annihilation component suggests that it is produced in the hot plasma situated in the inner parts of the accretion disk (the so-called corona). On the other hand, the possible excess seen in the Fermi-LAT (Loh et al. 2016), in temporal coincidence with a giant radio flare (Trushkin et al. 2015b) suggests that the HE emission, in the MeV-GeV energy range, originates inside the relativistic jet. Furthermore the observations of an orphan flare in the near Infrared (Tanaka et al. 2016) and the fast variability of the optical polarisation (Lipunov et al. 2016; Shahbaz et al. 2016) indicate the presence of a jet. Tanaka et al. (2016) derive the jet parameters, like the magnetic field, and constrain the emission zone.

Very high energy (VHE; \(E \gtrsim 50\) GeV) gamma-ray emission from microquasars has been theoretically predicted in association with the jets where relativistic particles are accelerated. VHE radiation could be produced via leptonic (e.g., Bosch-Ramon et al. 2006) or hadronic processes (e.g., Romero et al. 2003). IC process on photons from the companion star was proposed as the most likely scenario in the case of two microquasars detected in the HE regime: the high-mass X-ray binaries Cygnus X-1 (Zanin et al. 2016; Zdziarski et al. 2016) and Cygnus X-3 (Tavani et al. 2009; Abdo et al. 2009). In the case of the possible HE detection of the high-mass X-ray binary SS433 (Bordas et al. 2015) the proposed emission mechanism is hadronic via proton-proton collisions. On the other hand LMXBs, composed of cold and old stars, do not provide a proper photon field target for this process to take place. In LMXBs the dominant processes in the leptonic scenario are synchrotron and synchrotron self-Compton emissions from an extended dissipation region in the jet (Zhang et al. 2015). Differently from HMXBs where the dense matter environments favours emission from neutral pion decay (Bosch-Ramon & Khangulyan 2009), in LMXBs the donor star presents weak winds. Therefore in the hadronic scenario, photo-pion production could be considered as the emission mechanism instead (Levinson et al. 2001). In the innermost dissipation region of the jet, photon-pions are produced at the \(\Delta\) resonance by the interaction of accelerated protons and external X-ray photons entering the jet. Given the lack of targets provided by the low-mass companion star in LMXB (like V404 Cyg), gamma rays, are expected to be produced inside the relativistic jets and in particular where they are most compact, like at their base. According to models, gamma rays are created by the interaction of the particles in the jet with the radiation and magnetic fields in the jet itself (see e.g., Bosch-Ramon et al. 2006; Vila & Romero 2008; Vieyro & Romero 2012).
Figure 1. INTEGRAL light curve (red points) in the energy range 20–40 keV with the definition of the flaring interval. The time intervals with the highest flaring activity (gray bands) used in the analysis of MAGIC data are defined following the Bayesian Block method. The arrow refers to the peak of the Fermi-LAT hint of signal.

Figure 2. Distribution of the square of the angular distance from the position of the source. In the 7 hours accumulated there is no evidence of signal from V404 Cyg in the MAGIC data.

Table 1. Time intervals selected by the Bayesian Block algorithm. The start and stop times are in MJD.

<table>
<thead>
<tr>
<th>Start</th>
<th>Stop</th>
</tr>
</thead>
<tbody>
<tr>
<td>57191.337</td>
<td>57192.725</td>
</tr>
<tr>
<td>57193.665</td>
<td>57195.700</td>
</tr>
<tr>
<td>57196.765</td>
<td>57197.389</td>
</tr>
<tr>
<td>57199.116</td>
<td>57200.212</td>
</tr>
<tr>
<td>57200.628</td>
<td>57200.695</td>
</tr>
</tbody>
</table>

Triggers by the INTEGRAL alerts, MAGIC observed V404 Cyg for several nights between June 18th and 27th 2015, collecting more than 10 hours. In Section 2, we present the observations and the instrument overview. The analysis of the night wise observations and the focused analysis following the INTEGRAL light curve are presented in Section 3. Finally, we discuss the possible physical implication of the results of the MAGIC observations in Section 4.

2 OBSERVATIONS & DATA ANALYSIS

MAGIC is a stereoscopic system of two 17m diameter Imaging Atmospheric Cherenkov Telescopes (IACT). It is located at 2200 m a.s.l. in El Roque de los Muchachos Observatory, in La Palma, Spain. The performance of the telescopes is described in Aleksic et al. (2016); the trigger threshold is ~50 GeV below 30° zenith and the integral sensitivity is 0.66 ± 0.03% of the Crab Nebula flux above 220 GeV in 50 hours of observations.

Most of the MAGIC observations were triggered by the INTEGRAL alerts sent via Gamma-ray Coordinate Network (GCN). The first alert was received at 00:08:39 UT on the 18th of June. MAGIC observations continued until the 27th of June when the INTEGRAL alerts ceased. On the night between the 22nd and 23rd of June, the observations were not triggered by any alert, but scheduled a priori according to a multiwavelength campaign on the V404 Cyg system. The rest of the observations followed a GCN alert processed by the MAGIC Gamma-Ray Burst procedure. This procedure allows an automatic and fast re-pointing of the telescopes to the burst position in ~20 s. Most of the observations were performed during the strongest hard X-ray flares. In total, MAGIC observed the microquasar for 8 non-consecutive nights collecting more than 10 hours of data, some coinciding with observations at other energies.

The data were analyzed using the MAGIC software, MARS (Zanin et al. 2013), version 2-16-0. Standard event cuts are used to improve the signal to background ratio in the MAGIC data as described in Aleksic et al. (2016). The selections applied to estimate the significance of the source are based on hadronness, Θ2 and on the size of the shower images. The hadronness is a variable to quantify how likely is that a given event was produced by a hadronic atmospheric shower, while the Θ is the angular distance of each event from the position of the source in the camera plane.
Table 2. MAGIC observation periods of V404 Cyg. For each night the observation interval and duration is reported together with the detection significance for that night. In the last column the integral flux upper limits for energies between 200 and 1250 GeV are reported. The last row reports the same quantities for the periods selected with the Bayesian block algorithm.

<table>
<thead>
<tr>
<th>Observation date (June 2015)</th>
<th>Observation MJD</th>
<th>Effective time [h]</th>
<th>Detection significance [σ]</th>
<th>Flux UL [200–<E<1250 GeV] [ph/(cm² s)]</th>
</tr>
</thead>
<tbody>
<tr>
<td>18th</td>
<td>57191.006–57191.146</td>
<td>2.99</td>
<td>-0.43</td>
<td>5.1×10⁻¹²</td>
</tr>
<tr>
<td>19th</td>
<td>57191.960–57192.055</td>
<td>1.9</td>
<td>-0.6</td>
<td>1.0×10⁻¹¹</td>
</tr>
<tr>
<td>21st</td>
<td>57193.997–57194.025</td>
<td>0.66</td>
<td>1.57</td>
<td>4.35×10⁻¹¹</td>
</tr>
<tr>
<td>22nd</td>
<td>57195.021–57195.049</td>
<td>1.33</td>
<td>0.09</td>
<td>1.67×10⁻¹¹</td>
</tr>
<tr>
<td>23rd</td>
<td>57196.003–57196.124</td>
<td>2.74</td>
<td>-0.45</td>
<td>3.7×10⁻¹²</td>
</tr>
<tr>
<td>26th</td>
<td>57199.158–57199.204</td>
<td>1.03</td>
<td>-1.41</td>
<td>6.6×10⁻¹²</td>
</tr>
<tr>
<td>27th</td>
<td>57200.085–57200.115</td>
<td>1.97</td>
<td>-0.57</td>
<td>1.23×10⁻¹¹</td>
</tr>
<tr>
<td>Selected</td>
<td>See Table 1</td>
<td>6.88</td>
<td>-0.42</td>
<td>4.8×10⁻¹²</td>
</tr>
</tbody>
</table>

3 RESULTS

To avoid an iterative search over different time bins, we assumed that the TeV flares were simultaneous to the X-ray ones. We defined the time intervals where we search for signal in the MAGIC data, to match those of the flares in the INTEGRAL data, to verify that the TeV flares were simultaneous to the X-ray flare of this source. The Fermi-LAT signal is found in the 0.1–100 GeV energy interval and it peaks at MJD 57199.21±0.12. MAGIC observation during this period starts at MJD 57199.15 and lasts up to MJD 57199.20, which is within the interval of the Fermi-LAT excess. For this data set we recomputed the differential upper limits using a power law with index -3.5 (see green UL in Figure 3) according to the LAT analysis presented in Loh et al. (2016). The MAGIC upper limits are two order of magnitude higher than the extrapolation of the Fermi-LAT spectrum (see Figure 3).

4 DISCUSSION

MAGIC observed V404 Cyg for several nights during an outbursting period for a total amount of about 10 hours. The analysis of the data resulted in a non-detection and both differential and integral upper limits have been computed. The luminosity upper limits calculated for the full observation period, considering the source at a distance of 2.4 kpc, is ∼2×10³³ erg s⁻¹, in contrast with the extreme luminosity emitted in the X-ray band (∼2×10³⁸ erg s⁻¹, Rodriguez et al. 2015) and other wavelengths.

The emission of microquasars at VHE is still under debate. Processes similar to those taking place in AGN occur also in microquasars, but at a quite different scale. Similarly to quasars, microquasars develop jets, possibly relativistic, at least in their X-ray hard state (Fender et al. 2004). If the acceleration that takes place in the jets is efficient enough, VHE photon fluxes could reach 10⁻¹³ – 10⁻¹² ph cm⁻² s⁻¹ (for an object at about 5 kpc) (Bosch-Ramon et al. 2006; Zhang et al. 2015; Khiali et al. 2015) making them detectable by this or next generation of IACT.

During the June 2015 outburst of V404 Cyg, there are convincing evidences of jet emission given by the optical observations (Tanaka et al. 2016; Lipunov et al. 2016; Shabbaz et al. 2016). In particular on the 26th of June, a hint of de-

1 http://www.isdc.unige.ch/integralanalysis
Figure 3. Multiwavelength spectral energy distribution of V404 Cyg during the June 2015 flaring period. In red, MAGIC ULs are given for the combined Bayesian block time bins (∼7 hours) for which a power-law function with photon index 2.6 was assumed. In green, MAGIC ULs for observations on June 26th, simultaneously taken with the Fermi-LAT hint (Loh et al. 2016). In this case, a photon index of 3.5 was applied following Fermi-LAT results. All the MAGIC upper limits are calculated for a 95% confidence level, considering also a 30% systematic uncertainty. The extrapolation of the Fermi-LAT spectrum is shown in blue with 1 σ contour (gray dashed lines). In the X-ray regime, INTEGRAL (20-40 keV, Rodriguez et al. 2015) and Swift-XRT (0.2-10 keV, Tanaka et al. 2016) data are depicted. At lower energies, Kanata-HONIR optical and NIR data are shown, taken from Tanaka et al. (2016). Finally, RATAN-600 radio data, from Trushkin et al. (2015a), are presented for different days during the flaring period.
entic field conditions (see e.g. Khangulyan et al. 2008). On the other hand, VHE photon absorption becomes negligible for $r > 1 \times 10^{10}$ cm. Thus, if the VHE emission is produced in the same region as HE radiation ($r \gtrsim 1 \times 10^{11}$ cm, to avoid HE photon absorption in the X-ray photon field), then it would not be significantly affected by pair production attenuation ($\sigma_{\gamma\gamma} < 1$). Therefore a VHE emitter at $r \gtrsim 1 \times 10^{10}$ cm, along to the non-detection by MAGIC, suggests either a low particle acceleration rate inside the V404 Cyg jets or not enough energetics of the VHE emitter.

ACKNOWLEDGEMENTS

We are grateful to Lucia Pavan at UNIGE for the support on the INTEGRAL-IBIS data analysis. We would like to thank Dr. Rodriguez and Prof. Tanaka for providing the multi-wavelength data. We thank the anonymous reviewer for the useful comments that helped to set our results in a broader multi-wavelength context. We would like to thank the Instituto de Astrofísica de Canarias for the excellent working conditions at the Observatorio del Roque de los Muchachos in La Palma. The financial support of the German BMWF and MPG, the Italian INFN and INAF, the Swiss National Fund SNF, the ERDF under the Spanish MINECO (FPA2015-69818-P, FPA2012-36668, FPA2015-68378-P, FPA2015-69210-C6-2-R, FPA2015-69210-C6-4-R, FPA2015-69210-C6-6-R, AYA2015-71042-P, AYA2016-76012-C3-1-P, ESP2015-71662-C2-2-P, CSD2009-00064), and the Japanese JSPS and MEXT is gratefully acknowledged. This work was also supported by the Spanish Centro de Excelencia “Severo Ochoa” SEV-2012-0234 and SEV-2015-0548, and Unidad de Excelencia “María de Maeztu” MDM-2014-0369, by the Croatian MAGIC Consortium, Rudjer Boskovic Institute, University of Rijeka Project 13.12.1.3.02, by the DFG Collaborative Research Centers SFB823/C4 and SFB876/C3, and by the Polish MNISeW grant 2016/22/M/ST9/00382.

REFERENCES

Aleksić, et al. 2016, Astroparticle Physics, 72, 76
Barthelmy, et al. 2015, GRB Coordinates Network, 17929, 1
Ferrigno, C., et al. 2015, The Astronomer’s Telescope, 7662
Hillas, A. M. 1985, Proc. of the 19th ICRC, 3, 4
Makino, F., et al. 1989, IAU Circ., 4786, 1
Mooley, K., et al. 2015, The Astronomer’s Telescope, 7568, 7738
Makino, F., et al. 1989, IAU Circ., 4786, 1
Mooley, K., et al. 2015, The Astronomer’s Telescope, 7568, 7738
Makino, F., et al. 1989, IAU Circ., 4786, 1
Mooley, K., et al. 2015, The Astronomer’s Telescope, 7568, 7738
Trushkin, S. A., et al. 2015, The Astronomer’s Telescope, 7667, 1
Trushkin, S. A., et al. 2015, The Astronomer’s Telescope, 7716, 1
Zanin R. et al., Proc of 33rd ICRC, Rio de Janeiro, Brazil, Id. 773, 201

1 ETH Zurich, CH-8093 Zurich, Switzerland
2 Università di Udine, and INFN Trieste, I-33100 Udine, Italy
3 INAF National Institute for Astrophysics, I-00136 Rome, Italy
4 Università di Padova and INFN, I-35131 Padova, Italy
5 Croatian MAGIC Consortium, Rudjer Boskovic Institute, University of Rijeka, University of Split - FESB, University of Zagreb - FER, University of Osijek, Croatia
6 Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Salt Lake, Sector-1, Kolkata 700064, India
7 Max-Planck-Institut für Physik, D-80805 München, Germany
8 Universidad Complutense, E-28040 Madrid, Spain
9 Inst. de Astrofísica de Canarias, E-38200 La Laguna, Tenerife, Spain
10 Universidad de La Laguna, Dpto. Astrofísica, E-38206 La Laguna, Tenerife, Spain
11 University of Lodz, PL-90236 Lodz, Poland
12 Deutsches Elektronen-Synchrotron (DESY), D-15738 Zeuthen, Germany
13 Institut de Física d’Altes Energies (IFAE), The Barcelona Institute of Science and Technology, Campus UAB, 08193 Bellaterra (Barcelona), Spain
14 Universidad de Siena, and INFN Pisa, I-53100 Siena, Italy
15 Institute for Space Sciences (CSIC/IEEC), E-08193 Barcelona, Spain
16 Technische Universität Dortmund, D-44221 Dortmund,

MNRAS 000, 1–7 (2017)
Germany
17 Universität Würzburg, D-97074 Würzburg, Germany
18 Finnish MAGIC Consortium, Tuorla Observatory, University of Turku and Astronomy Division, University of Oulu, Finland
19 Unitat de Física de les Radiacions, Departament de Física, and CERES-IEEC, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain
20 Universitat de Barcelona, ICC, IEEC-UB, E-08028 Barcelona, Spain
21 Japanese MAGIC Consortium, ICRR, The University of Tokyo, Department of Physics and Hakubi Center, Kyoto University, Tokai University, The University of Tokushima, Japan
22 Inst. for Nucl. Research and Nucl. Energy, BG-1784 Sofia, Bulgaria
23 Università di Pisa, and INFN Pisa, I-56126 Pisa, Italy
24 ICREA and Institute for Space Sciences (CSIC/IEEC), E-08193 Barcelona, Spain
25 Humboldt University of Berlin, Institut für Physik Newtonstr. 15, 12489 Berlin Germany,
26 also at University of Trieste,
27 now at Finnish Centre for Astronomy with ESO (FINCA), Turku, Finland,
28 Laboratoire AIM (CEA/IRFU - CNRS/INSU - University Paris Diderot
This paper has been typeset from a \TeX/\LaTeX\ file prepared by
the author.