PROJECT FULLFLEX: A MULTIFUNCTIONAL FLEXIBLE ELECTRONIC LABEL

Jean-Christophe P. Gabriel

To cite this version:

HAL Id: cea-01555781
https://hal-cea.archives-ouvertes.fr/cea-01555781
Submitted on 4 Jul 2017

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Abstract: We will present a CEA joint effort that delivered a multifunctional label prototype that integrates flexibles: (i) photovoltaic cells; (ii) a nanoparticle based Li-battery; (iii) a battery management system; (iv) a tension regulator; (v) a temperature sensor; (vi) a light sensor; (vii) a silver nanowire based transparent capacitive touch sensor; (viii) four LEDs; (ix) an electronic motherboard integrating a micro-controller.

Jean-Christophe P. Gabriel
CEA/DRF/DPNS
Jean-Christophe.gabriel@cea.fr
PROJECT FULLFLEX:

A MULTIFUNCTIONAL FLEXIBLE ELECTRONIC LABEL

Dr. Jean-Christophe P. Gabriel
Dep. Director Nanoscience & ChimTronic Programs

Printed & Flexible Electronics Congress
February 21st, 2017
~17800 collaborators (~16000 staff members)

Budget: €4.1 BN, including €2.8 BN in subsidies

4,900 Scientific publications (in 2014 ISI base; IF = 4.5)

85 ERC grants

1,150 PhD students

5,840 Patent families in portfolio

735 Delivered priority patents deposited

850 M€ Revenues (460 M€ ind. Rev.): Research vs Industry

187 CEA’s Spin-off since 1972 (124 since 2000)

1st Reuters’ Ranking of Innovative Research Institutions

51 Joint research groups (including CNRS)
CAN A LOT BE DONE FROM NEW PARADIGMS?
THE EXAMPLE OF CNTS

- 2001-2007 @ Nanomix (nano.com): CNT integration – Chemical sensors

Molecular Wires for Molecular Sensing

- First commercial sensors in 2005: H₂ sensor on Si wafers
- Printed NT sensors deployed in West Africa during Ebola crisis in 2015.
- $36M raised over 15 years!!!

Copyright CEA, all rights reserved
Leverage effect (period 2008-2013, 98 projects, budget 7M€) : 170%

Direct income: 7M€ (32 projets: ANR, FP7,…)
Indirect incomes: 5M€ (15 projets: ANR, FP7, ERC,…)
Overall awarded money (with partners) : 78M€

260 articles de journaux sur 2009-2016 (4806 citations)
31% of articles (80) in top 10% (according to ESI Physics criteria)
6% of articles (16) in top 1%

4 start-up benefited directly from results initiated with program
29 patents (2008-2013)

Copyright CEA, all rights reserved
Objectif: go beyond germination!

Build a prototype Integrating technological components developed within Nanoscience & ChimTronic seed projects

- Reach higher TRL
FULLFLEX PROTOTYPE CHALLENGE?

Objectif: go beyond germination!

Build a prototype Integrating technological components developped within Nanoscience & ChimTronic seed projects

- Reach higher TRL
- Development of new technologies of flexible interconnects
- => A new prototype for CEA's Showroom
Objectif: go beyond germination!

Build a prototype integrating technological components developed within Nanoscience & ChimTronic seed projects

- Reach higher TRL
- Development of new technologies of flexible interconnects
- => A new prototype for CEA’s Showroom

Initial Concept: a flexible autonomous, multifunctions label
FULLFLEX: WHAT TEAM?

<table>
<thead>
<tr>
<th>Component</th>
<th>Investigators</th>
<th>Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Battery (Si NP)</td>
<td>Marc BRESTAZ</td>
<td>DRT/LITEN/DEHT/LCPB</td>
</tr>
<tr>
<td></td>
<td>Séverine JOUANNEAU</td>
<td>DRT/LITEN/DEHT/LCPB</td>
</tr>
<tr>
<td></td>
<td>Willy PORCHER</td>
<td>DRT/LITEN/DEHT/LCPB</td>
</tr>
<tr>
<td></td>
<td>Axelle QUINSAC (NTE)</td>
<td>DRT/LITEN/DEHT/LCPB</td>
</tr>
<tr>
<td></td>
<td>Yann LECONTE</td>
<td>DRT/LITEN/DEHT/LCPB</td>
</tr>
<tr>
<td></td>
<td>Nathalie HERLIN</td>
<td>DSM/IRAMIS/SPAM/EDNA</td>
</tr>
<tr>
<td></td>
<td>Rémi DE BETTIGNIES</td>
<td>DSM/IRAMIS/SPAM/EDNA/LFP</td>
</tr>
<tr>
<td></td>
<td>Nicolas GAUTHIER</td>
<td>DSM/INAC/SCIB/RICC</td>
</tr>
<tr>
<td></td>
<td>Marinclla MAZZANTI</td>
<td>DSM/INAC/SCIB/RICC</td>
</tr>
<tr>
<td></td>
<td>Daniel IMBERT</td>
<td>DSM/INAC/SCIB/RICC</td>
</tr>
<tr>
<td></td>
<td>Renaud DEMADRILLE</td>
<td>DSM/INAC/SPRAM/LEMOH</td>
</tr>
<tr>
<td></td>
<td>Amélie REVAUX</td>
<td>DRT/LITEN/DTNM/LCSN</td>
</tr>
<tr>
<td>PV organic</td>
<td>Benoit AMSTATT + François LEVY</td>
<td>DRT/LETI/DOPT/SOCOOP/LCE</td>
</tr>
<tr>
<td></td>
<td>& Alexandre LAGRANGE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Joël EYMERY + Benjamin GREVIN</td>
<td>DSM/INAC</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transparente Electrode (CNTs or NW)</td>
<td>Eléonore MOREAU</td>
<td>DRT/LITEN/DTNM/LCRE</td>
</tr>
<tr>
<td></td>
<td>Jean-Pierre SIMONATO</td>
<td>DRT/LITEN/DTNM/LCRE</td>
</tr>
<tr>
<td></td>
<td>+ Caroline CELLE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Benjamin GREVIN +</td>
<td>DSM/INAC</td>
</tr>
<tr>
<td></td>
<td>Renaud DEMADRILLE</td>
<td>DSM/INAC</td>
</tr>
<tr>
<td>Printed Electronics</td>
<td>Abdelkader ALIANE</td>
<td>DRT/LITEN/DTNM/LCEI</td>
</tr>
<tr>
<td></td>
<td>Romain COPPARD</td>
<td>DRT/LITEN/DTNM/LCEI</td>
</tr>
<tr>
<td>System /integration</td>
<td>Jean-François MAINGUET</td>
<td>DRT/LETI/DSIS/SIPPP</td>
</tr>
<tr>
<td></td>
<td>Tristan HAUTSON</td>
<td>DRT/LETI/DSIS/SIPPP</td>
</tr>
<tr>
<td></td>
<td>Pascale RIVIER</td>
<td>DRT/LETI/DSIS/SIPPP</td>
</tr>
<tr>
<td>Pilotage</td>
<td>Jean-Christophe GABRIEL</td>
<td>DSM/DIR/DPNS</td>
</tr>
<tr>
<td></td>
<td>Norbert DANIELE</td>
<td>DRT/LETI/DSIS/SIPPP</td>
</tr>
<tr>
<td></td>
<td>Tiana DELHOME</td>
<td>DRT/LETI/DSIS/SIPPP</td>
</tr>
</tbody>
</table>

Copyright CEA, all rights reserved
Printed Temperature Sensors

Abdelkader Aliane
PRINTED ORGANIC ELECTRONICS @CEA/LITEN

PLED (Polymer Light-Emitting Diodes)
- HMI, signage
- Devices, systems
- Single digit, matrix
- Logos

cf Talk Tony Maindron (OLED)

Antennas

Sensors
- Temperature (Resistors)
- Capacitive
- Pressure sensitive

Large Surface Printing Platform (PICTIC):
- 50 researchers and technicians
- €9 million in investment
- 600 sq. m of clean rooms
- Slot-die, gravure, flexography process equipment
- Industrial partnerships, startup (ISORG)
Photovoltaic flexible modules

Renaud DEMADRILLE – DRF / INAC / LEMOH
Solen Berson – DRT/INES/SMPV

• 2 Interpenetrated percolating networks
• Optimal phase segregation (10-20nm)

Photo-induced charge transfer $< 10^{-12}$ s

Copyright CEA, all rights reserved
Innovative materials and fabrication of flexible modules

Development of new materials for use in the active layer

Laboratoire des Modules Photovoltaïques Organiques (LMPO) – S. Berson (DRT-INES)

Development of OPV modules by printing techniques (ink-jet)
First examples with P3HT

P3HT-Fullerene

S = 11.04 cm²

PCE = 2.9%
Voc = 1.61 V
Jsc = 3 mA/cm²
FF= 60 %

Printed modules : S.Berson, R. De Bettignies, DRT-INES

P = 30mW

Cf talk Solenn Berson

Polymer Chem., 2016, 7, 4160

Compatible with Li Ion batteries
Vmin = 3.7V

Copyright CEA, all rights reserved
Voc = 6.2 V
Jsc = 0.577 mA/cm²
FF = 48.2 %
PCE = 1.73 %
Vmax = 4.1V
Imax = 35.8 mA
Silicium NP based battery

Nathalie Herlin, Séverine Jouanneau, Willy Porcher
AVANTAGE : Max = 3578 mAh/g (Si → Li₃.₇₅Si) = 10x graphite

DISAVANTAGE: $V_{inc} = +280\%$

Copyright CEA, all rights reserved
Core-shell amorphous silicon-carbon nanoparticles for high performance anodes in lithium ion batteries

Journal of Power Sources **328** (2016) 527-535

- 1 startup (Nanomakers)

NP Si@C: Amorphous C layer = 3nm, 10 nm, 15 nm

Copyright CEA, all rights reserved
Core-shell amorphous silicon-carbon nanoparticles for high performance anodes in lithium ion batteries

Journal of Power Sources **328** (2016) 527-535

1 startup (Nanomakers)

Overall

Positive Electrode: NMC (LiNi\(_{1/3}\)Mn\(_{1/3}\)Co\(_{1/3}\)O\(_2\))
Ref. Element: 3Ah for 3x3 cm x 5 mm cell
Power < 3W
Surface capacity: 3 mAh/cm\(^2\)
Voltage : 3.5 V

Copyright CEA, all rights reserved
To simplify or solve several technological barriers, another battery architecture is possible: the interdigitated planar design

- **The interdigitated concept reverses at 90 ° stacked architecture**
 - Architectured current collectors on the same plane
 - Electrodes printed side by side on respective collectors
 - Separator printed between the electrodes printed on the entire surface
 - Gellified electrolyte

- **Constraints of the concept:**
 - High printing resolution (10µm +/- 1µm)

- **Dimensions:**
 - Width of lines: 200µm
 - Distance between lines: <100µm (target 50µm) → electrolyte compartment

- **Solid electrolyte configuration**
- No densification

=> Thomas Yohann

Copyright CEA, all rights reserved
Flexible and fully printed multi materials

Non stacked configuration

Non contact printing technique

Interdigitated design

Nano inks

High resolution

- More flexibility
- Design
- Interfaces
- Versatility of shapes

Current collectors
Electrodes
Electrolyte

Current collectors
Electrodes
Electrolyte

Width of lines: 200µm
Distance between lines: <100µm (target 50µm) \(\rightarrow\) electrolyte compartment

Copyright CEA, all rights reserved
Transparent Electrode + Capacitive Sensors

JEAN-PIERRE SIMONATO
NEW TECHNOLOGIES = NEW NEEDS

A NEW NEED FOR FLEXIBLE TRANSPARENT ELECTRODES

TCOs (ITO) have serious limitations
- *Indium is a major critical raw material*
- *High cost process (capex, material)*
- *Brittleness*

Alternatives
- ✓ Conductivity / Transparency
- ✓ Flexibility / stretchability
- ✓ Low cost (material / process)

SUBSTITUTION of ITO by Nanomaterials
POTENTIAL ALTERNATIVES

- **Conducting polymers**
- **Carbon Nanotubes**
- **Graphene**
- **Metallic nanowires**

Copyright CEA, all rights reserved
POTENTIAL ALTERNATIVES

| Conducting polymers | \(J. \text{ Mater. Chem. C}, 2014 \)
| | \(\text{Chemical Science}, 2015 \)
| | \(\text{Chemistry of Materials}, 2016 \) |
| Carbon Nanotubes | \(\text{Nano Letters}, 2003 \)
| | \(\text{Carbon}, 2012 \)
| | \(\text{Carbon}, 2014 \) |
| Graphene | \(\text{Applied Physics Letters}, 2014 \)
| | \(\text{Ultramicroscopy}, 2015 \) |
| Metallic nanowires | \(\text{Nanoscale}, 2015 \)
| | \(\text{Small}, 2016 \)
| | \(\text{Nano Research}, 2012, 2014 \)
| | \(\text{Nanotechnology}, 2013 \times 2 \)
| | \(\text{Nano Letters}, 2016 \) |
Ag NW SYNTHESIS: COMPLICATED?

AgNO₃
PVP
Ethylene Glycol
NaCl

Copyright CEA, all rights reserved
PERCOLATIVE RANDOM NETWORKS OF Ag NANOWIRES

Percolation

~ 15 PATENTS
PERFORMANCES?

Resistance per square (Ω / \square)

$\#$ of bendings (radius of Curvature = 5 mm)

PERFORMANCES?

Resistance per square (Ω/\square)

of bendings (radius of Curvature = 5 mm)

Nanowire based LED

JOËL EYMERY, FRANÇOIS LEVY
NITRITE NW BY CATALYST-FREE MOVPE

1. Nitridation under NH$_3$ and SiN deposition

2. Wire growth under Silane injection and low V/III ratio

3. InGaN QW growth and p-GaN capping layer

Nanowire morphology

- **Diameter**: 500 nm – 2 µm
- **Height**: 10 – 30 µm
- **Density**: 10^7 cm$^{-2}$

Spontaneous growth – big surface available for process optimization

MOCVD growth by C. Durand, J. Eymery (CEA-Grenoble)

Koester et al., Nanotechnology 21, 015602 (2010)

Copyright CEA, all rights reserved
GAN NW BASED LEDS: FROM SOLID SUBSTRATES…

A-L Bavencove et al., Nanotechnology 22 (2011) 345705
Submicrometre resolved optical characterization of green nanowire-based light emitting diodes

Copyright CEA, all rights reserved
InGaN/GaN NWs / PDMS

Main challenge – transparent flexible contact
• Thin TCO layers
• Graphene and/or graphene µ-flakes
• Silver nanowire mesh

• GaN nanowires embedded into PDMS
• Mechanical lift-off of the composite film
• Back-side metallization and mounting on PET substrate

Copyright CEA, all rights reserved
• Large area flexible LEDs (active area of several cm2)
• No I-V or EL degradation after 10 bending cycles ($R_{\text{bending}} \approx 0.3 \text{ cm}$)
• Further improvement of emission homogeneity with organized NW arrays is under investigation

D. Xing et al, NanoLetters, 2015
La Recherche 2016 Award
Three Sensors: Light, temperature, capacitive

Copyright CEA, all rights reserved
Silver Nanowires
Transparent electrode

Copyright CEA, all rights reserved
Flexible electronic mother board

Mother-board: μ-controller & drivers

Copyright CEA, all rights reserved
Printed Resistors
NTS + PTS

Copyright CEA, all rights reserved
Flexible PV
• Capacitive mode (movie)
• Temperature alarm mode (movie)
• Light mode (movie)
1 year project, successful
Deadline met
4 CEA’s new techno. integrated

Since then:
3 startups, 20 patents, numerous H2020 projects + industrial contracts

More info:
jean-christophe.gabriel@cea.fr
<table>
<thead>
<tr>
<th>Component</th>
<th>Investigators</th>
<th>Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Battery (Si NP)</td>
<td>Marc BRESTAZ</td>
<td>DRT/LITEN/DEHT/LCPB</td>
</tr>
<tr>
<td></td>
<td>Séverine JOUANNEAU</td>
<td>DRT/LITEN/DEHT/LCPB</td>
</tr>
<tr>
<td></td>
<td>Willy PORCHER</td>
<td>DRT/LITEN/DEHT/LCPB</td>
</tr>
<tr>
<td></td>
<td>Axelle QUINSAC (NTE)</td>
<td>DSM/IRAMIS/SPAM/EDNA</td>
</tr>
<tr>
<td></td>
<td>Yann LECONTE</td>
<td>DSM/IRAMIS/SPAM/EDNA/LEFP</td>
</tr>
<tr>
<td></td>
<td>Nathalie HERLIN</td>
<td>DSM/IRAMIS/SPAM/EDNA</td>
</tr>
<tr>
<td>PV organic</td>
<td>Rémi DE BETTIGNIES</td>
<td>DRT/LITEN/DTS/LMPV</td>
</tr>
<tr>
<td></td>
<td>Nicolas GAUTHIER</td>
<td>DSM/INAC/SCIB/RICC</td>
</tr>
<tr>
<td></td>
<td>Marina MAZZANTI</td>
<td>DSM/INAC/SCIB/RICC</td>
</tr>
<tr>
<td></td>
<td>Daniel IMBERT</td>
<td>DSM/INAC/SCIB/RICC</td>
</tr>
<tr>
<td></td>
<td>Renaud DEMADRILLE</td>
<td>DSM/INAC/SPRAM/LEMOH</td>
</tr>
<tr>
<td></td>
<td>Amélie REVAUX</td>
<td>DRT/LITEN/DTNM/LCSN</td>
</tr>
<tr>
<td>LED (NW)</td>
<td>Benoit AMSTATT + François LEVY & Alexandre LAGRANGE</td>
<td>DRT/LETI/DOPT/SOCOOP/LCE</td>
</tr>
<tr>
<td></td>
<td>Joël EYMERY + Benjamin GREGVIN</td>
<td>DSM/INAC</td>
</tr>
<tr>
<td>Transparente Electrode</td>
<td>Eléonore MOREAU</td>
<td>DRT/LITEN/DTNM/LCRE</td>
</tr>
<tr>
<td>(CNTs or NW)</td>
<td>Jean-Pierre SIMONATO</td>
<td>DRT/LITEN/DTNM/LCRE</td>
</tr>
<tr>
<td></td>
<td>+ Caroline CELLE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Benjamin GREGVIN + Renaud DEMADRILLE</td>
<td>DSM/INAC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DSM/INAC</td>
</tr>
<tr>
<td>Printed Electronics</td>
<td>Abdelkader ALIANE</td>
<td>DRT/LITEN/DTNM/LCEI</td>
</tr>
<tr>
<td></td>
<td>Romain COPPARD</td>
<td>DRT/LITEN/DTNM/LCEI</td>
</tr>
<tr>
<td>System /integration</td>
<td>Jean-François MAINGUET</td>
<td>DRT/LETI/DSIS/SIPP</td>
</tr>
<tr>
<td></td>
<td>Tristan HAUTSON</td>
<td>DRT/LETI/DSIS/SIPP</td>
</tr>
<tr>
<td></td>
<td>Pascale RIVIER</td>
<td>DRT/LETI/DSIS/SIPP</td>
</tr>
<tr>
<td>Pilotage</td>
<td>Jean-Christophe GABRIEL</td>
<td>DSM/DIR/DPNS</td>
</tr>
<tr>
<td></td>
<td>Norbert DANIELE</td>
<td>DRT/LETI/DSIS/SIPP</td>
</tr>
<tr>
<td></td>
<td>Tiana DELHOME</td>
<td>DRT/LETI/DSIS/SIPP</td>
</tr>
</tbody>
</table>