A. Anandkumar, R. Ge, D. Hsu, S. M. Kakade, and M. Telgarsky, Tensor decompositions for learning latent variable models, Journal of Machine Learning Research, vol.15, issue.1, pp.2773-2832, 2014.
DOI : 10.1007/978-3-319-24486-0_2

A. Cichocki, D. Mandic, L. De-lathauwer, G. Zhou, Q. Zhao et al., Tensor Decompositions for Signal Processing Applications: From two-way to multiway component analysis, IEEE Signal Processing Magazine, vol.32, issue.2, pp.145-163, 2015.
DOI : 10.1109/MSP.2013.2297439

URL : http://arxiv.org/pdf/1403.4462

N. D. Sidiropoulos, L. De-lathauwer, X. Fu, K. Huang, E. E. Papalexakis et al., Tensor Decomposition for Signal Processing and Machine Learning, IEEE Transactions on Signal Processing, vol.65, issue.13, 2016.
DOI : 10.1109/TSP.2017.2690524

URL : http://arxiv.org/abs/1607.01668

E. Richard and A. Montanari, A statistical model for tensor PCA, Advances in Neural Information Processing Systems, p.2897, 2014.

S. B. Korada and N. Macris, Exact Solution of the Gauge Symmetric p-Spin Glass Model on a Complete Graph, Journal of Statistical Physics, vol.163, issue.29, pp.205-230, 2009.
DOI : 10.1017/CBO9780511791338

Y. Deshpande and A. Montanari, Information-theoretically optimal sparse PCA, 2014 IEEE International Symposium on Information Theory, pp.2197-2201, 2014.
DOI : 10.1109/ISIT.2014.6875223

URL : http://arxiv.org/abs/1402.2238

F. Krzakala, J. Xu, and L. Zdeborová, Mutual information in rank-one matrix estimation, 2016 IEEE Information Theory Workshop (ITW), pp.71-75, 2016.
DOI : 10.1109/ITW.2016.7606798

URL : http://arxiv.org/abs/1603.08447

J. Barbier, M. Dia, N. Macris, F. Krzakala, T. Lesieur et al., Mutual information for symmetric rank-one matrix estimation: A proof of the replica formula, Advances in Neural Information Processing Systems 2016, p.424, 2016.

M. Lelarge and L. Miolane, Fundamental limits of symmetric low-rank matrix estimation, 2016.

S. Rangan and A. K. Fletcher, Iterative estimation of constrained rankone matrices in noise, IEEE Int. Symp. on Inf. Theory, pp.1246-1250, 2012.

M. Bayati and A. Montanari, The dynamics of message passing on dense graphs, with applications to compressed sensing Information Theory, IEEE Transactions on, vol.57, issue.2, pp.764-785, 2011.

T. Lesieur, F. Krzakala, and L. Zdeborová, Phase transitions in sparse PCA, 2015 IEEE International Symposium on Information Theory (ISIT), p.1635, 2015.
DOI : 10.1109/ISIT.2015.7282733

URL : https://hal.archives-ouvertes.fr/cea-01140712

T. Lesieur, F. Krzakala, and L. Zdeborová, MMSE of probabilistic lowrank matrix estimation: Universality with respect to the output channel, 53rd Annual Allerton Conference on Communication, Control, and Computing, 2015.
URL : https://hal.archives-ouvertes.fr/cea-01222294

T. Lesieur, F. Krzakala, and L. Zdeborová, Constrained low-rank matrix estimation: Phase transitions, approximate message passing and applications, p.2017
URL : https://hal.archives-ouvertes.fr/cea-01447222

A. Crisanti and H. Sommers, The spherical p-spin interaction spin glass model: The statics, Zeitschrift für Physik B Condensed Matter, pp.341-354, 1992.
DOI : 10.1007/bf01309287

M. Mézard, G. Parisi, and M. A. Virasoro, Spin-Glass Theory and Beyond, World Scientific, vol.9, 1987.

D. J. Thouless, P. W. Anderson, and R. G. Palmer, Solution of 'Solvable model of a spin glass', Philosophical Magazine, vol.35, issue.3, p.593, 1977.
DOI : 10.1103/PhysRevLett.35.1792

A. Crisanti and H. Sommers, Thouless-Anderson-Palmer Approach to the Spherical p-Spin Spin Glass Model, Journal de Physique I, vol.5, issue.7, p.805, 1995.
DOI : 10.1051/jp1:1995164

URL : https://hal.archives-ouvertes.fr/jpa-00247104

A. Perry, A. S. Wein, and A. S. Bandeira, Statistical limits of spiked tensor models, 2016.

R. Matsushita and T. Tanaka, Low-rank matrix reconstruction and clustering via approximate message passing, Advances in Neural Information Processing Systems, p.917, 2013.

L. Zdeborová and F. Krzakala, Statistical physics of inference: thresholds and algorithms, Advances in Physics, vol.19, issue.5, pp.453-552, 2016.
DOI : 10.1214/009117905000000233

D. Panchenko, The Sherrington-Kirkpatrick model, 2013.
DOI : 10.1007/978-1-4614-6289-7

A. Montanari, Estimating random variables from random sparse observations, Trans. Emerging Tel. Tech, vol.19, issue.4, p.385, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00290792

F. Guerra, Broken Replica Symmetry Bounds in the Mean Field Spin Glass Model, Communications in Mathematical Physics, vol.233, issue.1, 2003.
DOI : 10.1007/s00220-002-0773-5

M. Aizenman, R. Sims, and S. L. Starr, Extended variational principle for the Sherrington-Kirkpatrick spin-glass model, Physical Review B, vol.60, issue.21, p.214403, 2003.
DOI : 10.1209/epl/i2002-00667-5

M. Talagrand, Mean field models for spin glasses: Volume I: Basic examples, 2010.
DOI : 10.1007/978-3-540-40908-3_3

M. C. Angelini, F. Caltagirone, F. Krzakala, and L. Zdeborová, Spectral detection on sparse hypergraphs, 2015 53rd Annual Allerton Conference on Communication, Control, and Computing (Allerton), p.66, 2015.
DOI : 10.1109/ALLERTON.2015.7446987

URL : https://hal.archives-ouvertes.fr/cea-01330412