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Decoding from Pooled Data:

Phase Transitions of Message Passing

Ahmed El Alaoui∗ Aaditya Ramdas?†

Florent Krzakala‡ Lenka Zdeborová§ Michael I. Jordan?†

Abstract

We consider the problem of decoding a discrete signal of categorical variables from the
observation of several histograms of pooled subsets of it. We present an Approximate Mes-
sage Passing (AMP) algorithm for recovering the signal in the random dense setting where
each observed histogram involves a random subset of entries of size proportional to n. We
characterize the performance of the algorithm in the asymptotic regime where the num-
ber of observations m tends to infinity proportionally to n, by deriving the corresponding
State Evolution (SE) equations and studying their dynamics. We initiate the analysis of
the multi-dimensional SE dynamics by proving their convergence to a fixed point, along
with some further properties of the iterates. The analysis reveals sharp phase transition
phenomena where the behavior of AMP changes from exact recovery to weak correlation
with the signal as m/n crosses a threshold. We derive formulae for the threshold in some
special cases and show that they accurately match experimental behavior.

1 Introduction

Consider a discrete high-dimensional signal consisting of categorical variables, for example,
nucleotides in a string of DNA or country of origin for a set of people. In many real-world
settings, it is infeasible to observe the entire high-dimensional signal, for reasons of cost or
privacy. Instead, in a manner akin to compressed sensing, observations can be obtained in the
form of “histograms” or “frequency spectra”—pooled measurements counting the occurence of
each category or type across subsets of the variables. Concretely, we investigate the so-called
Histogram Query Problem (HQP): a database consisting of a population of n individuals,
where each individual belongs to one category among d, is queried. In each query, a subset
of individuals is selected, and the histogram of their types, along with the individuals in
that subset are revealed. Such a data acquisition model is common in applications such as
the processing of genetic data, where DNA samples from multiple sources are pooled and
analyzed together [SBC+02]. This gives rise to the inferential problem of determining the
category of every individual in the population. The question of interest in this paper is to
determine the minimal number of observations needed for recovery, and to ascertain whether
this inferential problem can be solved in an efficient manner.
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1.1 The setting

Let τ∗ : {1, · · · , n} 7→ {1, · · · , d} be an assignment of n variables to d categories. We denote
the queried subpopulations by Sa ⊂ {1, · · · , n}, 1 ≤ a ≤ m. Given m subsets Sa, the
histogram of categories of the pooled subpopulation Sa is denoted by ha ∈ Zd+, i.e., for all
1 ≤ a ≤ m,

ha :=
(∣∣τ∗−1(1) ∩ Sa

∣∣ , · · · , ∣∣τ∗−1(d) ∩ Sa
∣∣) . (1)

We let π = 1
n

(∣∣τ∗−1(1)
∣∣ , · · · , ∣∣τ∗−1(d)

∣∣) denote the vector of proportions of assigned values;
i.e., the empirical distribution of categories. We place ourselves in a random dense regime in
which the sets {Sa}1≤a≤m are independent draws of a random set S where Pr(i ∈ S) = α
independently for each i ∈ {1, . . . , n}, for some fixed α ∈ (0, 1). Meaning, at each query, the
size of the pool is proportional to the size of the population: E[|S|] = αn.

Here we adopt a linear-algebraic formulation which will be more convenient for the pre-
sentation of the algorithm. We can represent the map τ∗, which we refer to as the planted
solution, as a set of vectors x∗i = eτ∗(i) ∈ Rd, for 1 ≤ i ≤ n. Let A ∈ Rm×n represent the
sensing matrix: Aai = 1{i ∈ Sa}, for all 1 ≤ i ≤ n, 1 ≤ a ≤ m. The histogram equations (1)
can be written in the form of a linear system of m equations:

ha =
n∑
i=1

Aaix
∗
i , a ∈ {1, · · · ,m}. (2)

Our goal can thus be rephrased as that of inverting the linear system (2). Note that the
problem becomes trivial if m = n, since the square random matrix A will be invertible with
high probability. However, as we review in the next section, a detailed information-theoretic
analysis of the problem shows that the planted solution is uniquely determined by the above
linear system for m = γ n

logn , γ > 0. In this paper we study the algorithmic problem in the
regime m = κn, κ < 1.

1.2 Prior work

The HQP has recently been considered in [WHLC16, ERK+16]. Its study was initiated
in [WHLC16] in the two settings where the sets {Sa} are deterministic and random. We
review the information-theoretic and algorithmic results known so far.

Information-theoretic aspect Under the condition that π is the uniform distribution,
Wang et al. [WHLC16] showed a lower bound on the minimum number of queries m for the
problem to be well-posed, namely, if m < log d

d−1
n

logn then the set of collected histograms does

not uniquely determine the planted solution τ∗. Further, under the condition that α = 1
2 , they

showed that m > c0
n

logn with c0 a constant independent of d, suffices to uniquely determine

τ∗. These results were later generalized and sharpened in [ERK+16], where it was shown
that for arbitrary π and α, m ∈ (γlow

n
logn , γup

n
logn) measurements are necessary and sufficient

for τ∗ to be unique, where γlow = H(π)
d−1 , and γup is “essentially” 2γlow (see [ERK+16] for the

precise formula), H being the Shannon entropy function.

Algorithmic aspect In the deterministic setting, where one is allowed to design the sensing
matrix A, i.e. choose the pools Sa at each query, Wang et al. [WHLC16] provided a querying
strategy that recovers τ∗ provided that m > c1

n
logn , where c1 is an absolute constant. Ignoring
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the dependence on d, this almost matches the information-theoretic limit. The random setting
has not been treated so far, and is the subject of the present paper.

1.3 Contributions

We present an Approximate Message Passing (AMP) algorithm for the random dense setting,
where each query involves a random subset of individuals of size proportional to n. We
characterize the exact asymptotic behavior of the algorithm in the limit of large number of
individuals n and a proportionally large number of queries m, i.e. m/n→ κ. This is done by
heuristically deriving the corresponding State Evolution (SE) equations corresponding to the
AMP algorithm. Then, a rigorous analysis of the SE dynamics reveals a rich and interesting
behavior; namely the existence of phase transition phenomena in the parameters κ, d,π of
the problem, due to which the behavior of AMP changes radically, from exact recovery to
very weak correlation with the planted solution. We exactly locate these phase transitions in
simple situations, such as the binary case d = 2, the symmetric case π = (1d , · · · ,

1
d), and the

general case under the condition that the SE iteration is initialized from a special point. The
latter exhibits an intriguing phenomenon: the existence of not one, but an entire sequence of
thresholds in the parameter κ that rules the behavior of the SE dynamics. These thresholds
correspond to sharp changes in the structure of the covariance matrix of the estimates output
by AMP. We expect this phenomenon to be generic beyond the special initialization case
studied here. Beyond the precise characterization of the phase transition thresholds in these
special cases, we initiate the study of State Evolution in a multivariate setting by proving the
convergence of the full-dimensional SE iteration, when initialized from a “far enough” point,
to a fixed point, and show further properties of the iterate sequence. This paper is intended
to be a sequel to the information-theoretic study conducted in [ERK+16].

2 Approximate Message Passing and State Evolution

In this section we present the Approximate Message Passing (AMP) algorithm and the cor-
responding State Evolution (SE) equations.

2.1 The AMP algorithm

The AMP algorithm [DMM09], known as the Thouless-Anderson-Palmer equations in the
statistical physics literature [TAP77], can be derived from Belief Propagation (BP) on the
factor graph modeling the recovery problem. The latter is a bipartite graph of n+m vertices.
The variables {xi : 1 ≤ i ≤ n} constitute one side of the bipartition, and the observations
{ha : 1 ≤ a ≤ m} constitute the other side. The adjacency structure is encoded in the
sensing matrix A. Endowing each edge (i, a) with two messages mi→a,ma→i ∈ ∆d−1, ∆d−1

being the probability simplex, one can write the self-consistency equations for the messages
at each node by enforcing the histogram constraints at each observation (or check) node
while treating the incoming messages as probabilistically independent in the marginalization
operation. The iterative version of these self-consistency equations is the BP algorithm. BP
is further simplified to AMP by exploiting the fact that the factor graph is random and
dense, i.e. one only needs to track the average of the messages incoming to each node. This
reduces the number of passed messages from m × n to m + n. For the present d-variate
problem, the algorithm we present is a special case of Hybrid-GAMP of [RFGS12]. We let
h̄a = (ha − αnπ)/

√
n and A = (A − α1m1>

n )/
√
n be the centered and rescaled data, and
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assume that the parameters α and π are known to the algorithm. The AMP algorithm reads
as follows: At iteration t = 1, 2, . . . , we update the check nodes a = 1, · · · ,m as

ωta =
∑
j∈∂a

Aajx̂
t
j − V t

a

(
V t−1
a

)−1
(h̄a − ωt−1a ),

V t
a =

∑
j∈∂a

A2
ajB

t
j ,

and then update the variable nodes i = 1, · · · , n as

zti = x̂ti + Σt
i ·
∑
b∈∂i

Abi
(
V t
b

)−1
(h̄b − ωtb),

Σt
i =

(∑
b∈∂i

A2
bi

(
V t
b

)−1)−1
,

x̂t+1
i = η(zti ,Σ

t
i),

Bt+1
i = Diag(x̂t+1

i )− x̂t+1
i · x̂t+1>

i ,

with

η(z,Σ) :=
d∑
r=1

πrer
e−

1
2
(z−er)>Σ−1(z−er)

Z(z,Σ)
∈ Rd, (3)

where Z(z,Σ) =
∑d

r=1 πre
− 1

2
(z−er)>Σ−1(z−er) is a normalization factor so that the entries of

η sum to one. The map η plays the role of a “thresholding function” with a matrix parameter
Σ that is adaptively tuned by the algorithm. One should compare this situation to the case
of sparse estimation [DMM09] where the soft thresholding function is used. Here, the form
taken by η is adapted to the structure of the signal we seek to recover. The variables ωa
and Va represent estimates of the histogram ha and their variances. The variables zi and Σi

are estimators of the planted solution x∗i and their variances before thresholding, while x̂i ∈
∆d−1 and Bi are the posterior estimates of x∗i and its variance, i.e., after thresholding. The
algorithm can be initialized in a “non-informative” way by setting x̂0

i = π,B0
i = Diag(π) −

ππ> for all i = 1, . . . , n, and ω−1a = 0 and V −1a = I for all a = 1, · · · ,m for example. We
defer the details of the derivation to Appendix B.

2.2 State Evolution

State Evolution (SE) [DMM09, BLM12], known as the cavity method in statistical physics
[MPV90], allows us to exactly characterize the asymptotic behavior of AMP at each time step
t, by tracking the evolution in time of the relevant order parameters of the algorithm. More
precisely, let

Mt,n :=
1

n

n∑
i=1

x̂tix
∗>
i , and Qt,n :=

1

n

n∑
i=1

x̂tix̂
t>
i .

The matrix Mt,n tracks the average alignment of the estimates with the true solution, and
Qt,n their average covariance structure. The SE equations relate the values of these order
parameters at t + 1 to those at time t in the limit n → ∞, m/n → κ. We let Mt and
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Qt denote the respective limits of Mt,n and Qt,n, which we assume exist in this “replica-
symmetric” regime, and let D = Diag(π). The SE equations read

Mt+1 =
d∑
r=1

πr Eg
[
η(er +X

1
2
t g, κ

−1Rt)
]
· e>r ,

Qt+1 =

d∑
r=1

πr Eg
[
η(er +X

1
2
t g, κ

−1Rt) · η(er +X
1
2
t g, κ

−1Rt)
>],

Xt = κ−1(D −Mt −M>
t +Qt),

Rt = Diag(Qt1)−Qt,

with g ∼ N (0, I). The matrix κXt is the covariance matrix of the error of the estimates
output by AMP at time t, and Rt can be interpreted as the average covariance matrix of the
estimates themselves. Note that the parameter α has disappeared from the characterization
by the SE equations, just as in the information theoretic study [ERK+16].

The full derivation of these equations is relegated to Appendix C. The main hypothesis
behind the derivation, which we do not rigorously verify, is that the variables zti are asymp-
totically Gaussian, centered about x∗i and with covariance Xt: the measure 1

n

∑n
i=1 δzti−x∗i

converges weakly to N (0,Xt). We refer to [BM11, BLM12] for rigorous results, the assump-
tions of which do not apply to this setting. It is an interesting problem to prove the exactness
of the SE equations in this setting.

2.3 Simplification of SE

Here we simplify the system of SE equations above to a single iteration. This crucially relies
on the following Proposition:

Proposition 1. If M0 = Q0, then for all t we have

(i) Mt = Qt. In particular, Mt is a symmetric PSD matrix, and Mt1 = π.

(ii) Rt = κXt = D −Mt.

The proof of the above proposition is deferred to Appendix A. We pause to make a few
remarks. The assumption of the Proposition could be enforced for example by setting the
initial estimates of AMP as x̂0

i = π for all i. This yields M0 = Q0 = ππ>, and hence
X0 = κ−1(D − ππ>). The statements in the Proposition —together referred to as the
Nishimori identities in the statistical physics literature [ZK16]— simplify the SE equations
to a single iteration on Xt. To succinctly present this simplification, for r ∈ {1, · · · , d}, and
X � 0, we let

ηr(X) := η(er +X
1
2g,X) ∈ ∆d−1.

Then, the SE equations can be seen to boil down to the single equation

Xt+1 = κ−1f(Xt), (4)
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where, recalling that g ∼ N (0, I), we define

f(X) := D −
d∑
r=1

πr Eg
[
ηr(X)ηr(X)>

]
(5)

= D −
d∑
r=1

πr Eg [ηr(X)] · e>r , (6)

=
d∑
r=1

πr Eg
[
(er − ηr(X)) · (er − ηr(X))>

]
, (7)

where equations (5) and (6) correspond to substituting the value of Qt and Mt into statement
(ii) of the above proposition, while the last equality (7) is just a consequence of the first two,
(5) and (6). Furthermore, via elementary algebra, the coordinates of the vector ηr(X) can
written as

(ηr(X))s =

πs exp

(
−g>X−

1
2 (er − es)− 1

2

∥∥∥X− 1
2 (er − es)

∥∥∥2
`2

)
Zr(X)

, (8)

with

Zr(X) :=

d∑
s=1

πs exp

(
−g>X−

1
2 (er − es)−

1

2

∥∥∥X− 1
2 (er − es)

∥∥∥2
`2

)
.

2.4 The mean squared & 0-1 errors

We can measure the performance of AMP by the mean squared error of the estimates {x̂ti}ni=1:

MSEt,n =
1

n

n∑
i=1

∥∥x̂ti − x∗i ∥∥2`2 .
Since x̂ti ∈ ∆d−1, an alternative measure of performance would be the expected 0-1 distance
between a random category drawn from the multinomial x̂i and the true category x∗i , then
averaged over i = 1, · · · , n. This error would be written as

1

n

n∑
i=1

d∑
r=1

x̂tir(1− e>r x∗i ) = 1− 1

n

n∑
i=1

x̂t>i x
∗
i

= 1− trace(Mt,n) = trace (D −Mt,n) .

On the other hand, the MSE in the large n limit reads

MSEt := lim
n→∞

MSEt,n = trace
(
Qt −Mt −M>

t +D
)
,

= trace (D −Mt) ,

so the two notions of error coincide in the limit. Note that the MSE at each step t can be
deduced from SE iterate at time t: MSEt = κ trace(Xt).
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3 Analysis of the State Evolution dynamics

In this section we present our main results on the convergence of the SE iteration (4) to a
fixed point, and the location of the phase transition thresholds in three special cases. We
start by analyzing the SE map f and present some important generic results.

3.1 Analysis of the SE map f

From expression (7), we see that the map f sends the positive semi-definite (PSD) cone Sd×d+

to itself. As written, f is only defined for invertible matrices X, but it could be extended
by continuity to singular matrices: if er − es is in the null space of X, we declare that
exp(−1

2‖X
− 1

2 (er − es)‖2) = 0. This convention is consistent with the limiting value of a

sequence
{

exp(−1
2‖X

− 1
2

n (er−es)‖2)
}
n≥0 where

{
Xn

}
n≥0 is a sequence of invertible matrices

approaching X. This also has an interpretation based on an analogy with electrical circuits,
which we discuss shortly. This extension will be also denoted by f . It is continuous over the
Sd×d+ , and we have f(0) = 0. Now, we state an important property of f , namely that it is
monotone:

Proposition 2. The map f is order-preserving on Sd×d+ ; i.e., for all X,Y � 0, if X � Y
then f(X) � f(Y ).

The proof of this Proposition is conceptually simple but technical, and is thus deferred to
Appendix A. Next, we adopt a combinatorial view of the structure of the SE dynamics. This
will help us identity subspaces of Sd×d+ that are left invariant by f . Note that the definition of

f involves X−
1
2 acting on span(1)⊥. Additionally, it is easy to verify that for all X ∈ Sd×d+ ,

f(X)1 = 0, and f(X)rs ≤ 0 for all r 6= s. Therefore, without loss of generality, we can
restrict the study of the state evolution iteration to the set

A :=
{
X ∈ Sd×d+ , X1 = 0, Xrs ≤ 0 ∀(r, s) s.t. r 6= s

}
,

since it is invariant under the dynamics. The set A can be seen as the set of Laplacian
matrices of weighted graphs on d vertices (every edge (r, s) is weighted by −Xrs for X ∈ A).
Hence f can be seen as a transformation on weighted graphs. This transformation enjoys the
following invariance property:

Proposition 3. For all X ∈ A, f preserves the connected component structure of the graph
represented by X; i.e, two distinct connected components of the graph whose Laplacian matrix
is X remain distinct when transformed by f .

Proof. The proof relies on the concept of effective resistance. One can view a graph of Lapla-
cian X ∈ A as a network of resistors with resistances 1/(−Xrs). The effective resistance
of an edge (r, s) is the resistance of the entire network when one unit of current is injected
at r and collected at s (or vice-versa). Its expression is a simple consequence of Kirchhoff’s

law, and is equal to Rrs :=
∥∥X−1/2(er − es)∥∥2`2 (see e.g. [Spi]). It is clear that the effective

resistance of an edge is finite if and only if both its endpoints belong to the same connected
component of the graph, otherwise Rrs = +∞, and (ηr(X))s = 0. This causes f to “factor”
across connected components, and thus acts on them independently. �

Next, let us look at the limit of f(tX) for large t. For X ∈ A invertible on span(1)⊥,
we have limt→∞ f(tX) = D − ππ>, since ηr(tX) → π almost surely. More generally, if X
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represents a graph with {Vk}1≤k≤K connected components, (ηr(tX))s 6= 0 only if r, s are in
the same component. Hence, ηr(tX) → Pkπ

1>Pkπ
, where Pk is the orthogonal projector onto

the span of the coordinates in Vk where r ∈ Vk, and we have

lim
t→∞

f(tX) = D −
K∑
k=1

Pkππ
>Pk

1>Pkπ
=: LK . (9)

By Propositions 2 and 3 and the limit calculation (9), we deduce that for any partition
{Vk}1≤k≤K of {1, · · · , d}, and all Laplacian matrices X � 0 of graphs with connected com-
ponents V1, · · · , VK , we have

f(X) � LK . (10)

Indeed, since X � tX for all t ≥ 1, we have f(X) � f(tX) by monotonicity of f . Letting
t → ∞ settles the claim. In particular, with K = 1, L1 = D − ππ>, and for all X ∈ A
representing a connected graph (i.e. rank(X) = d − 1), we have f(X) � D − ππ>. We are
now ready to state the main result of this subsection.

Theorem 4. Let {Vk}1≤k≤K be a partition of {1, · · · , d}, and LK defined as in (9). Let
X0 ∈ A with connected components V1, · · · , VK , and such that X0 � κ−1LK . If the SE
iteration (4) is initialized from X0, then the sequence {Xt}t≥0 is decreasing in the PSD

order, i.e., Xt �Xt−1 for all t ≥ 1, and converges to a fixed point X∗, i.e., X∗ = κ−1f(X∗).

Proof. Let X0 satisfy the conditions of the Theorem. Using X0 � κ−1LK and observa-
tion (10), we have X1 = κ−1f(X0) � X0. By monotonicity of f , we deduce that the SE
iterates form a monotone sequence: Xt+1 � Xt for all t ≥ 0. Since Xt � 0 for all t,
then this sequence must have a limit1 X∗ � 0. By continuity of f , this limit must satisfy
X∗ = κ−1f(X∗). �

We expect that for κ large enough, X∗ = 0, meaning that limMt = D and limMSEt = 0.
This situation corresponds to perfect recovery of the planted solution {x∗i }ni=1 by AMP. We
can easily show that this is the case for

κ > κ∗ := sup
X∈A

λmax(f(X))

λmax(X)
. (11)

Indeed,

λmax(Xt+1) = κ−1λmax(f(Xt)) ≤
κ∗

κ
λmax(Xt).

If κ > κ∗ then the SE iterates converge to 0 for every initial point. It is currently unclear
to us whether this condition is also necessary. Instead, we consider three special cases and
exactly locate the phase transitions thresholds.

3.2 The binary case

In this section we treat the case d = 2, which is akin to a noiseless version of the CDMA
problem [GV05] or the problem of compressed sensing with binary prior. In this case, the SE

1One can see this by observing that {z>Xtz}t≥0 is a non-negative monotonically decreasing sequence for
all z ∈ Rd; hence it must have a (non-negative) limit. Then, via the identity y>Xtz = 1

2
((y + z)>Xt(y +

z) − (y − z)>Xt(y − z)), one deduces that {y>Xtz}t≥0 has a limit for all y,z ∈ Rd. These limits define a
bi-linear operator which is (y,z) 7→ y>X∗z.
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iteration becomes one-dimensional. Indeed, we have A =
{
xuu>, x ≥ 0

}
, with u = (1,−1)>.

And since this space is invariant under f , the latter can be parameterized by one scalar
function x 7→ ϕ(x), defined by

f(xuu>) = ϕ(x)uu>, ∀x ≥ 0.

Next, we compute ϕ. For X = xuu>, we have X−
1
2u = 1√

2x
u. Then, letting π = (p, 1−p)>,

using (6) we have

ϕ(x) = f(xuu>)1,1 = p− pEg

[
p

p+ (1− p)e−g>u/
√
2x−1/2x

]
,

= Eg
[

p(1− p)
1− p+ peg>u/

√
2x+1/2x

]
,

= Eg
[

p(1− p)
1− p+ peg/

√
x+1/2x

]
. (12)

Letting Xt = atuu
>, for all t ≥ 0, the SE reduces to

at+1 = κ−1ϕ(at). (13)

The function ϕ is continuous, increasing on R+, and bounded (since ϕ(∞) = p(1− p) <∞).
Moreover, ϕ(0) = 0. Therefore, the sequence (13) converges to zero for all initial conditions
a0 > 0 if and only if κ−1ϕ(x) < x for all x > 0, i.e.

κ > κ∗binary(p) := sup
x>0

Eg
[

p(1− p)x2

1− p+ p exp (gx+ x2/2)

]
.

By a change of variables g + x/2→ g, one can also write this threshold as

κ∗binary(p) = sup
x>0

Eg

[
p(1− p)x2e−x2/8

pegx/2 + (1− p)e−gx/2

]
. (14)

If κ < κ∗binary(p), then a new stable fixed point a∗ > 0 appears and the sequence {at}t≥0
converges to it for all initial conditions a0 ≥ a∗, and the asymptotic MSE of the AMP
algorithm is limt→∞MSEt = a∗ trace(uu>) = 2a∗.

Figure 1 demonstrates the accuracy of the above theoretical predictions — the predicted
MSE by State Evolution matches the empirical MSE of AMP on a random instance with
n = 2000, across the whole range of p and κ.

3.3 The symmetric case

In this section we treat the symmetric case where all types have equal proportions: π =
(1d , · · · ,

1
d), and analyze the SE dynamics. In this situation, the half-line {x(D−ππ>) , x ≥ 0}

is stable under the application of the map f , and the dynamics becomes one-dimensional if
initialized on this half-line.

Lemma 5. Assume π = (1d , · · · ,
1
d). For all x > 0, we have

f

(
x(I − 1

d
11>)

)
= ϕ(x)

(
I − 1

d
11>

)
,

9
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Figure 1. MSE of AMP on a random instance with n = 2000 in the binary case (left),
and predicted MSE by State Evolution (right) as a function of p = π1 and κ. The blue region
corresponds to exact recovery. The boundary of this region is traced by the curve p 7→ κ∗binary(p)

in equation (14).

with

ϕ(x) = Eg

[
exp(g2/

√
x)

exp(g1/
√
x+ 1/x) +

∑d
r=2 exp(gr/

√
x)

]
.

Proof. Let P = (I − 1
d11>), and X = xP with x > 0. The matrix P is the orthogonal

projector on span(1)⊥. Therefore, we have

X−1/2(er − es) = (er − es)/
√
x.

Therefore for all r 6= s,

f(X)rs = −1

d
Eg

[
exp

(
−g>(er − es)/

√
x− 1/x

)
1 +

∑
l 6=r exp (−g>(er − el)/

√
x− 1/x)

]
.

By permutation-invariance of the Gaussian distribution, we see that f(X) is constant on
its off-diagonal entries, hence on its diagonal entries as well since f(X)1 = 0. Writing
f(X) = α

d I −
β
d (11> − I), we have (α+ β) = dβ. Hence, f(X) = β(I − 1

d11>) with

β = Eg

[
exp

(
−g>(e1 − e2)/

√
x− 1/x

)
1 +

∑
l 6=r exp (−g>(e1 − el)/

√
x− 1/x)

]
,

= Eg

[
exp(g2/

√
x)

exp(g1/
√
x+ 1/x) +

∑d
r=2 exp(gr/

√
x)

]
,

as claimed. �

Therefore, if the SE iteration is initialized on this half-line: X0 = a0(I − 1
d11>), with

a0 > 0, then Xt = at(I − 1
d11>) for all t, with

at+1 = κ−1ϕ(at).

10



Just as in the binary case, the function ϕ is continuous, increasing and bounded with ϕ(0) = 0.
Hence, we have convergence to zero for all initial condition a0 > 0 if and only if κ−1ϕ(x) < x
for all x > 0, i.e.

κ > κ∗sym(d) := sup
x>0

Eg

[
x2 exp (g2x)

exp (g1x+ x2) +
∑d

r=2 exp (grx)

]
. (15)

Otherwise, it converges to a non-zero value a∗ for all initial conditions a0 > a∗, and the
asymptotic MSE of the AMP algorithm is a∗ trace(I − 1

d11>) = (d− 1)a∗. Using the change
of variables g1 + x→ g1, one can also write this threshold as

κ∗sym(d) = sup
x>0

Eg

[
x2e−x

2/2 exp((g1 + g2)x)∑d
r=1 exp(grx)

]
.

It is not straightforward to read off the magnitude of κ∗sym(d) from the above expression. We
provide a table of approximate values for several small values of d:

d 2 3 4 5 6 7 8 9 10

κ∗sym .47 .39 .34 .30 .27 .24 .22 .21 .20

For larger d, an asymptotic expression for this threshold may be desirable. We prove the
following in Appendix A:

Proposition 6. There exist two constants 0 < cl < cu such that when d is large enough,

cl
log d

d
≤ κ∗sym(d) ≤ cu

log d

d
,

Furthermore, one can take cl = 1− od(1), and cu = 2 + od(1).

3.4 The general case initialized with a matching

Here we consider the SE iteration in arbitrary dimension and with arbitrary proportions of
types π, but we initialize the dynamics from a special pointX0 that corresponds to a matching
of the vertices {1, · · · , d}: each edge present in the matching corresponds to its own connected
component. This case reveals an interesting behavior which we suspect is generic regardless
of the initialization: the existence of a sequence of thresholds κ∗1, κ

∗
2, · · · ruling the behavior

of the SE dynamics. Let M = {(i1, i2), (i3, i4), · · · , (iK−1, iK)} be a matching on the set of
vertices {1, · · · , d} (not all vertices are necessarily part of the matching), and let X0 be its
Laplacian matrix, where edges are weighted by arbitrary positive numbers. By Proposition 3,
f “factors” across connected components, thus each edge in the matching will follow its own
dynamics independently of the other edges. The edges not initially present in the matching
remain inactive forever. For (r, s) ∈M, we have (Xt)rr = (Xt)ss = −(Xt)rs = −(Xt)sr, and

X
− 1

2
t (er − es) =

1√
2(Xt)rr

(er − es),

and therefore, using expression (6) and letting x = (Xt)rr,

f(Xt)rr = πr − Eg [(ηr(Xt))r] ,

= πr Eg
[

πs

πre(gr−gs)/
√
2x+1/2x + πs

]
,

= πr Eg
[

πs

πreg/
√
x+1/2x + πs

]
.

11



Therefore, the SE iteration reduces to

(Xt+1)rr = κ−1 Eg

[
πrπs

πre
g/
√

(Xt)rr+1/2(Xt)rr + πs

]
,

for all vertices (r, s) ∈ M. Note that this iteration is essentially the same as the one in the
binary case (12)-(13), where p becomes πr and 1 − p becomes πs. For each (r, s) ∈ M, the
above iteration converges to the fixed point zero for every initial point if and only if

κ > κ∗rs := sup
x>0

Eg

[
πrπsx

2e−x
2/8

πregx/2 + πse−gx/2

]
. (16)

Here, we symmetrized the expression just as in the binary case (14). Arranging these thresh-
olds as κ∗1 > κ∗2 > · · · from largest to smallest we see that the fixed point of the SE iteration
gains one non-zero edge at each κ∗i as κ decreases from some large value to zero. Equivalently,
X∗ gains a rank one component corresponding to the connected component constituted by
that edge. It is an interesting problem to determine the behavior of the SE iteration and
locate these thresholds, if they exist, beyond this simple matching case.

4 Conclusion

We presented an algorithm for decoding categorical variables of a signal from randomly pooled
observations of it, and characterized its performance it terms of a state evolution equation.
The analysis of this evolution revealed phase transition phenomena in the parameters of the
problem that happen in the linear regime m/n → κ. These algorithmic results, combined
with information-theoretic ones [WHLC16, ERK+16] leave a large region in parameter space
(γ n

logn < m < κn) where the signal is identifiable but AMP fails at recovering it, hinting at a
possible computational hardness in this structured signal recovery problem. This could have
interesting applications in privacy-related considerations. Further, we proved the convergence
of the SE dynamics to a fixed point. The analysis of the properties of this fixed point as
a function of the parameters κ,π in the general case, together with rigorous proof of the
exactness of the state evolution equations for this problem are interesting open problems.
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A Omitted proofs

A.1 Proof of Proposition 1

We proceed by induction. Now assume that Mt−1 = Qt−1 and that Rt−1 = κXt−1. We prove
that Rt = κXt and then that Mt is symmetric and Mt = Qt.

The first step is to show that Qt1 = π. By assumption, Xt−1 = κ−1(D − Qt−1) =
κ−1Rt−1. Let us define,

ηrs := ηr(X)s =
πs exp

(
−g>X−1/2(er − es)− 1

2

∥∥X−1/2(er − es)∥∥2`2)
Zr(X)

. (17)

13

http://www.cs.yale.edu/homes/spielman/561
http://www.cs.yale.edu/homes/spielman/561


The sth coordinate of Qt1 is

(Qt1)s =
d∑
r=1

πr Eg
[(
η(er +X

1/2
t g, κ−1Rt)

)
s

]
=

d∑
r=1

πr Eg [ηrs] .

Moreover, letting δrs = X
−1/2
t−1 (er − es), we have

Eg [ηrs] =

∫
πs exp(−1

2 ‖g + δrs‖2`2)∑d
l=1 πl exp(−1

2 ‖g + δrl‖2`2)

e
− 1

2
‖g‖2`2

(2π)d/2
dg,

(i)
=

∫
exp(−1

2 ‖g‖
2
`2

)∑d
l=1 πl exp(−1

2 ‖g + δrl‖2`2)

πse
− 1

2
‖g−δrs‖2`2

(2π)d/2
dg,

=

∫
πs exp(−1

2 ‖g + δsr‖2`2)∑d
l=1 πl exp(−1

2 ‖g + δsl‖2`2)

e
− 1

2
‖g‖2`2

(2π)d/2
dg.

The only non-trivial equality is (i) and it was obtained through a simple change of variable
g + δrs → g. Therefore,

(Qt1)s = πs

d∑
r=1

Eg

[
πr exp(−1

2 ‖g + δsr‖2`2)∑d
l=1 πl exp(−1

2 ‖g + δsl‖2`2)

]
= πs.

In addition, the above argument also shows that Mt is symmetric since, for r, s ∈ {1, · · · , d},

(Mt)rs = πs Eg[ηsr].

Now we have that Rt = D−Qt, and by symmetry of Mt, Xt = κ−1(D− 2Mt +Qt). To
complete the proof, it remains to show that Mt = Qt. For r, s ∈ {1, · · · , d} we have

(Qt)rs =

d∑
l=1

πl Eg [ηlrηls] .

Once again, we make the change of variable g + δlr → g:

(Qt)rs = πrπs

d∑
l=1

πl

∫
exp(−1

2 ‖g‖
2
`2

) exp(−1
2 ‖g + δrs‖2`2)(∑d

l′=1 πl′ exp(−1
2 ‖g + δrl′‖2`2)

)2 e
− 1

2
‖g−δlr‖2`2

(2π)d/2
dg,

= πrπs Eg

[
exp(−1

2 ‖g + δrs‖2`2)∑d
r′=1 πr′ exp(−1

2 ‖g + δrl′‖2`2)

]
,

= (Mt)sr .

A.2 Proof of Proposition 2

The map f is differentiable at every X � 0 invertible on span(1)⊥. Let 0 � X � Y , and
W : [0, 1] → Sd×d+ defined by W (t) = (1 − t)X + tY . We will show that d

dtf(W (t)) � 0 for
all t ∈ [0, 1] and conclude with the fundamental theorem of calculus

f(Y )− f(X) =

∫ 1

0

d

dt
f(W (t))dt.
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We start by computing the derivative of each entry of f(W (t)). Let r, s ∈ {1, . . . , d}. We
have

d

dt
f(W (t))rs = − d

dt
πr E [(ηr(W (t)))s] .

To prepare for further calculations, let us write

A(t) := W (t)−1/2
d

dt

(
W (t)−1/2

)
,

and

B(t) :=
d

dt

(
W (t)−1

)
= −W (t)−1 · d

dt
W (t) ·W (t)−1.

We observe by the chain rule of differentiation that

A(t) +A(t)> = B(t). (18)

This identity will be used several times. Now we start computing the derivative. Let

Drs : = πs
d

dt
exp

(
−g>W (t)−1/2(er − es)−

1

2

∥∥∥W (t)−1/2(er − es)
∥∥∥2
`2

)
= πs

(
−g> d

dt

(
W (t)−1/2

)
(er − es)−

1

2
(er − es)>B(t)(er − es)

)
× exp

(
−g>W (t)−1/2(er − es)−

1

2

∥∥∥W (t)−1/2(er − es)
∥∥∥2
`2

)
.

Then,

d

dt
ηr(W (t))s =

Drs

Zr(W (t))
− ηr(W (t))s ×

d∑
l=1

Drl

Zr(W (t))
. (19)

Now, by differentiating under the expectation sign, we are lead to process expressions of the
form

Eg
[

Drs

Zr(W (t))

]
and Eg

[
ηr(W (t))s

Drl

Zr(W (t))

]
.

Here, the Gaussian integration by parts formula

Eg [gh(g)] = Eg
[
h′(g)

]
for all univariate differentiable functions h with moderate growth (say polynomial) at infinity,
will be used multiple times. Recalling

ηrs = ηr(W (t))s =
πs exp

(
−g>W (t)−1/2(er − es)− 1

2

∥∥W (t)−1/2(er − es)
∥∥2
`2

)
Zr(W (t))

,

from (17), we have

Eg
[
g>

d

dt

(
W (t)−1/2

)
(er − es) ηrs

]
= Eg

[
(∇gηrs)>

d

dt

(
W (t)−1/2

)
(er − es)

]
= −(er − es)>A(t)(er − es) Eg [ηrs]

+
d∑
l=1

(er − el)>A(t)(er − es) Eg [ηrsηrl] ,
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and similarly,

Eg
[
g>

d

dt

(
W (t)−1/2

)
(er − el) ηrsηrl

]
= −

(
(er − el)>A(t)(er − el)

+ (er − es)>A(t)(er − el)
)
Eg [ηrsηrl]

+ 2
d∑

r′=1

(er − er′)>A(t)(er − el)Eg [ηrsηrlηrr′ ] .

Therefore,

Eg
[

Drs

Zr(W (t))

]
= (er − es)>A(t)(er − es)Eg [ηrs]−

1

2
(er − es)>B(t)(er − es)Eg [ηrs]

−
d∑
l=1

(er − el)>A(t)(er − es) Eg [ηrsηrl] .

Since A(t) +A(t)> = B(t) (identity (18)), the first two terms in the above expression cancel
each other, and we are left with

Eg
[

Drs

Zr(W (t))

]
= −

d∑
l=1

(er − el)>A(t)(er − es) Eg [ηrsηrl] .

On the other hand, using the identity (18) again,

Eg
[
ηr(W (t))s

Drl

Zr(W (t))

]
=
(
(er − el)>A(t)(er − el) + (er − es)>A(t)(er − el)

)
Eg [ηrsηrl]

− 1

2
(er − el)>B(t)(er − el)Eg [ηrsηrl]

− 2

d∑
r′=1

(er − er′)>A(t)(er − el)Eg [ηrsηrlηrr′ ]

= (er − es)>A(t)(er − el)Eg [ηrsηrl]

− 2
d∑

r′=1

(er − er′)>A(t)(er − el)Eg [ηrsηrlηrr′ ] .

Now, using the above two formulas, and recalling (19), we have

d

dt
E [ηr(W (t))s] = −

d∑
l=1

(er − el)>A(t)(er − es)Eg [ηrsηrl]

−
d∑
l=1

(er − es)>A(t)(er − el)Eg [ηrsηrl]

+ 2
d∑
l=1

d∑
r′=1

(er − er′)>A(t)(er − el)Eg [ηrsηrlηrr′ ] .
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Using identity (18), the sum of the first two terms in the above expression is

−
d∑
l=1

(er − es)>B(t)(er − el)Eg [ηrsηrl] ,

= −
d∑

l,r′=1

(er − es)>B(t)(er − el)Eg [ηrsηrlηrr′ ] ,

where we used the fact
∑

r′ ηrr′ = 1 in the last expression. Similarly, the third term is equal
to

d∑
l,r′=1

(er − er′)>B(t)(er − el)Eg [ηrsηrlηrr′ ] .

Therefore we obtain

d

dt
E [ηr(W (t))s] =

d∑
l,r′=1

(er − er′)>B(t)(es − el)Eg [ηrsηrlηrr′ ] .

The expression we just obtained does not appear to be symmetric in the indices (r, s), but it
does become symmetric when multiplied by πr, thanks to the following identity:

Lemma 7. Recall the definition of ηrs from (17). For all r, s, l ∈ {1, · · · , d} we have

πr Eg [ηrsηrl] =

d∑
l′=1

πl′ Eg [ηl′rηl′sηl′l] .

Using the above, we get

d

dt
f(W (t))rs = −πr

d

dt
E [ηr(W (t))s] ,

= −
d∑

l,l′,r′=1

πl′(er − er′)>B(t)(es − el)Eg [ηl′rηl′sηl′lηl′r′ ] ,

= −
d∑

l′=1

πl′ Eg
[
ηl′rηl′s · (er − ηl′)>B(t)(es − ηl′)

]
.

This implies that for all z ∈ Rd

z>
d

dt
f(W (t))z =

d∑
r,s=1

d

dt
f(W (t))rszrzs,

= −
d∑

l′=1

πl′ Eg
[
(z � ηl′ − (z>ηl′)ηl′)

>B(t)(z � ηl′ − (z>ηl′)ηl′)
]
,

where � denote the entry-wise product of two vectors. Since B(t) = −W (t)−1 · d
dtW (t) ·

W (t)−1 and d
dtW (t) = Y −X � 0, we see that

z>
d

dt
f(W (t))z =

d∑
l′=1

πl′ Eg
[∥∥∥(Y −X)

1
2W (t)−1

(
z � ηl′ − (z>ηl′)ηl′

)∥∥∥2
`2

]
≥ 0,
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hence concluding the general argument. It now remains to prove Lemma 7.

Proof of Lemma 7. The proof relies on a simple change of variables in the expectation.
Using (17), and letting δrs = W (t)−1/2(er − es) for all r, s, we have

Eg [ηl′rηl′sηl′l] = πrπsπl Eg

e−g>(δl′r+δl′s+δl′l)−
1
2
‖δl′r‖

2
`2
− 1

2
‖δl′s‖

2
`2
− 1

2
‖δl′l‖

2
`2(∑d

r′=1 πr′e
−g>δl′r′−

1
2
‖δl′r′‖

2
`2

)3


= πrπsπl Eg

e− 1
2
‖g+δl′r‖

2
`2
− 1

2
‖g+δl′s‖

2
`2
− 1

2
‖g+δl′l‖

2
`2(∑d

r′=1 πr′e
− 1

2
‖g+δl′r′‖

2
`2

)3


= πrπsπl

∫
Rd

e
− 1

2
‖g+δl′r‖

2
`2
− 1

2
‖g+δl′s‖

2
`2
− 1

2
‖g+δl′l‖

2
`2(∑d

r′=1 πr′e
− 1

2
‖g+δl′r′‖

2
`2

)3 e
− 1

2
‖g‖2`2

(2π)d/2
dg.

We make the change of variables g + δl′r → g. The term ‖g + δl′r‖2`2 becomes ‖g‖2`2 ,

‖g + δl′s‖2`2 becomes ‖g + δrs‖2`2 , ‖g + δl′l‖2`2 becomes ‖g + δrl‖2`2 , ‖g‖2`2 becomes ‖g + δrl′‖2`2 ,

and ‖g + δl′r′‖2`2 becomes ‖g + δrr′‖2`2 in the denominator. The first term will assume the role
of the Gaussian density, and we rewrite the above as an expectation under the Gaussian dis-
tribution:

πrπsπl Eg

e− 1
2
‖g+δrs‖2`2−

1
2
‖g+δrl‖2`2−

1
2
‖g+δrl′‖

2
`2(∑d

r′=1 πr′e
− 1

2
‖g+δrr′‖

2
`2

)3
 .

If the above expression is multiplied by πl′ and summed over all l′, the third term in the
numerator cancels with one power of the denominator, and the result is

πrπsπl Eg

 e
− 1

2
‖g+δrs‖2`2−

1
2
‖g+δrl‖2`2(∑d

r′=1 πr′e
− 1

2
‖g+δrr′‖

2
`2

)2
 = πr Eg [ηrsηrl] .

A.3 Proof of Proposition 6

For x > 0, we let

φd(x) := Eg

[
x2
∑d

r=2 e
gr
√

log(d−1)x

eg1
√

log(d−1)x · (d− 1)x2 +
∑d

r=2 e
gr
√

log(d−1)x

]
.

By symmetry in the variables gr, r ≥ 2, we can see that

φd

(
x√

log(d− 1)

)
=

d− 1

log(d− 1)
Eg

[
x2 exp(g2x)

exp(g1x+ x2) +
∑d

r=2 exp(grx)

]
.

Our claim reduces to exhibiting upper and lower bounds on supx>0 φd(x) which are asymp-
totically independent of d. We start with the upper bound. Since, the function x → x

1+x is
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concave on R+, we have by Jensen’s inequality,

φd(x) ≤ Eg1

 x2
∑d

r=2 Egr:r≥2
[
egr
√

log(d−1)x
]

eg1
√

log(d−1)x · (d− 1)x2 +
∑d

r=2 Egr:r≥2
[
egr
√

log(d−1)x
]
 ,

= Eg1

[
x2(d− 1)1+x

2/2

eg1
√

log(d−1)x · (d− 1)x2 + (d− 1)1+x2/2

]
.

We split the analysis into two cases: x ≤
√

2 + ε, x >
√

2 + ε for some ε > 0. We see that
φd(x) ≤ x2 for all x > 0. If x ≤

√
2 + ε, then φd(x) ≤ (

√
2 + ε)2. For the remaining case,

let α = α(ε) > 0 such that x2/2 − αx − 1 > 0 for all x >
√

2 + ε. One can find such an
α as the solution to the equation α +

√
α2 + 2 =

√
2 + ε. Next, we let E be the event that

g1 ≤ 1−x2/2+αx
x

√
log(d− 1), and write

φd(x) ≤ Eg1

[
x2

(d− 1)x2/2−1 · eg1
√

log(d−1)x + 1

∣∣∣∣Ē
]

Pr(Ē)

+ Eg1

[
x2

(d− 1)x2/2−1 · eg1
√

log(d−1)x + 1

∣∣∣∣E
]

Pr(E),

Under Ē , we have −x2/2 + 1 − g1x
√

log(d− 1) ≤ −αx, and the first term in the above
expression is upper bounded by

x2(d− 1)−αx.

On the other hand, we upper bound the conditional expectation in the second term by x2,
and use the fact that Pr(E) ≤ (d− 1)−(1−x

2/2+αx)2/(2x2). We obtain the upper bound

φd(x) ≤ x2
(

(d− 1)−αx + (d− 1)−(1−x
2/2+αx)2/(2x2)

)
,

which decays to 0 as d→∞ uniformly in x ≥
√

2 + ε. This proves that

sup
x>0

φd(x) ≤ (
√

2 + ε)2

for all d sufficiently large.
Now we turn our attention on the lower bound. Since the function x→ x

1+x is increasing,
we have

φd(x) ≥ Eg

[
x2emaxr≥2 gr

√
log(d−1)x

eg1
√

log(d−1)x · (d− 1)x2 + emaxr≥2 gr
√

log(d−1)x

]
.

The maximum of finitely many Gaussians concentrates in a sub-Gaussian way: for all t ≥ 0,

Pr

(
max
r≥2

gr − E[max
r≥2

gr] ≤ −t
)
≤ e−t2/2.

We write E[maxr≥2 gr] = cd
√

log(d− 1); it is known that cd =
√

2(1 − od(1)). Letting
t = εcd

√
log(d− 1) for some ε > 0, we have

φd(x) ≥ Eg1

[
x2(d− 1)(1−ε)cdx

eg1
√

log(d−1)x · (d− 1)x2 + (d− 1)(1−ε)cdx

]
·
(

1− (d− 1)−ε
2c2d/2

)
.
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We plug the value x = (1− ε)cd in the right hand side, and deduce

sup
x>0

φd(x) ≥ Eg1

[
(1− ε)2c2d

eg1(1−ε)cd
√

log(d−1) + 1

]
·
(

1− (d− 1)−ε
2c2d/2

)
.

We see that the above converges to the value (1− ε)2 as d→∞.

B Deriving the Approximate Message Passing equations

We divide the derivation of the AMP equations into two parts. First, we write down the
Belief Propagation (BP) equations, and simplify them to the “relaxed” BP equations. Then,
we show how to transform the relaxed BP equations into the AMP iteration.

B.1 From Belief Propagation (BP) to Relaxed BP

The factor graph G of our model consists of a bipartite graph with the variables {xi, 1 ≤ i ≤
n} on one side of the bipartition and the measurements {ha, 1 ≤ a ≤ m} on the other side.
A measurement (or check) node ha is connected to k = αn variables nodes in expectation
chosen uniformly at random (i.e. those such that Aai = 1) from all the variable nodes.

We rescale the elements of the sensing matrix A such that Aai has expectation 0 and
variance α(1−α)

n . This can be done by subtracting the vector αnπ from each observation ha
and dividing everything by

√
n. Hence, we let

ha := (ha − αnπ)/
√
n,

and
A = (A− α1m1>

n )/
√
n.

The linear system ha =
∑n

j=1Aajx
∗
j is equivalent to h̄a =

∑n
j=1Aajx

∗
j .

We now write the messages of the Belief Propagation algorithm. Let ~E be the set of
directed edges of the factor graph with all possible directions, i.e., each edge (i, a) is en-
dowed with both directions i → a and a → i. Note that | ~E| = 2km. The message passing

procedure consists of iterating a map BP :
(
∆d−1) ~E → (

∆d−1) ~E from some initial guess
until (possible) convergence. For convenience, for all r ∈ {1, · · · , d}, any set of messages

m = {mi→a , ma→i : Aai = 1} ∈
(
∆d−1) ~E on G, and any directed edge a → i, we denote

the rth coordinate of the d-dimensional message ma→i by ma→i(er) instead of (ma→i)r, and
similarly for the coordinates of ma→i. With this notation in hand, the map BP is defined
as follows: We consider a prior distribution on the messages that agrees with the category
proportions in the planted solution τ∗, i.e., for every i and r,

P (xi = er) = πr

This is our “uninformative” prior: under lack of any further information, the algorithm pre-
dicts that xi = er with probability πr for all i and r. Then for all x ∈ {e1, · · · , ed},

BP(m)i→a(x) :=
1

Zi→a(m)
P (x)

∏
b∈∂i\a

mb→i(x), (20)

BP(m)a→i(x) :=
1

Za→i(m)

∑
xj∈{e1,··· ,ed}

j∈∂a\i

1

h̄a = Aaix+
∑
j 6=i

Aajxj

 ∏
j∈∂a\i

mj→a(xj), (21)
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with Zi→a(m) and Za→i(m) are the normalizing factors such that
∑d

r=1 BP(m)i→a(er) =∑d
r=1 BP(m)a→i(er) = 1. If G was a tree, the map BP would compute the exact posterior

distribution of the category assignments {xi : 1 ≤ i ≤ n} given the observations {ha : 1 ≤
a ≤ m}. In our case this will only be true when m/n is large enough.

We see that the second equation above has a sum involving dk−1 terms, which makes the
execution of the BP algorithm intractable. We derive a set of relaxed Belief Propagation
messages from the above that only require linear-algebraic computations of size polynomial
in n and m. Later, we further simplify these equations by leveraging the fact that our factor
graph is random and dense, to finally arrive at the Approximate Message Passing iteration.

We now proceed by replacing the indicator in (21) by a Gaussian with small variance
σ > 0, which we then linearize by writing it as the Fourier transform of the standard Gaussian
measure (this is also known as the Hubbard-Stratonovich transformation):

BPσ(m)a→i(x) :=
1

Za→i(m)

∑
xj∈{e1,··· ,ed}

j∈∂a\i

exp

(
−
∥∥∥∥h̄a − n∑

j=1

Aajxj

∥∥∥∥2
`2

/
2σ2
) ∏
j∈∂a\i

mj→a(xj),

∝
∑

xj∈{e1,··· ,ed}
j∈∂a\i

∫
Rd

exp

(
iσ−1g>

(
h̄a −

n∑
j=1

Aajxj

)) ∏
j∈∂a\i

mj→a(xj)γd(dg),

where we let γd refer to the standard d-dimensional Gaussian measure.

∝
∫
Rd

exp

(
iσ−1g>

(
h̄a −Aaix

))
×
∏

j∈∂a\i

[ ∑
xj∈{e1,··· ,ed}

exp
(
− iσ−1Aajg

>xj
)
mj→a(xj)

]
γd(dg).

Now, observe that the exponentials in the sum above involve the terms Aaj which are of
order 1/

√
n. By expanding the Taylor series of the exponential, one can show∑

xj∈{e1,··· ,ed}

exp(−iσ−1Aajg
>xj) mj→a(xj) =

d∑
r=1

exp(−iσ−1Aajg
>er) mj→a(er)

= exp

(
− iσ−1Aajg

>mj→a −
1

2
σ−2A2

ajg
>Bj→ag

)
+O(1/n3/2),

where
Bj→a = Diag(mj→a)−mj→am

>
j→a. (22)

Plugging the above expression into the message, we get

BPσ(m)a→i(x) ≈ 1

Za→i(m)

∫
Rd

exp

(
iσ−1g>

(
h̄a −Aaix

))
×
∏

j∈∂a\i

exp

(
− iσ−1Aajg

>mj→a −
1

2
σ−2A2

ajg
>Bj→ag

)
γd(dg),

=
1

Za→i(m)

∫
Rd

exp

(
iσ−1g>

(
h̄a −Aaix

)
−
∑
j∈∂a\i

iσ−1Aajg
>mj→a −

1

2

∑
j∈∂a\i

σ−2A2
ajg

>Bj→ag

)
γd(dg).
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We denote the “average” message and variance that appear in the formula above by

ωa→i :=
∑
j∈∂a\i

Aajmj→a, (23)

Va→i :=
∑
j∈∂a\i

A2
ajBj→a. (24)

The exponentiated term in the integrand, when combined with the contribution of the Gaus-
sian density, becomes

iσ−1g>
(
h̄a −Aaix− ωa→i

)
− 1

2
σ−2g>Va→ig −

1

2
‖g‖2`2

= iσ−1g>
(
h̄a −Aaix− ωa→i

)
− 1

2
g>(σ−2Va→i + I)g.

Now, computing the integral yields

BPσ(m)a→i(x) ∝ exp

(
− 1

2σ2

∥∥∥(σ−2Va→i + I)−
1
2
(
h̄a −Aaix− ωa→i

)∥∥∥2
`2

)
,

and letting σ → 0 yields

BP(m)a→i(x) ∝ exp

(
−1

2

∥∥∥∥V − 1
2

a→i
(
h̄a −Aaix− ωa→i

)∥∥∥∥2
`2

)
.

On the other hand, by injecting the above formula into the messages from-variable-to-check
node (20), the latter can be written as

BP(m)i→a(x) ∝ P (x) exp

 ∑
b∈∂i\a

−1

2

∥∥∥V −1/2b→i (h̄b −Abix− ωb→i)
∥∥∥2
`2

 ,

∝ P (x) exp

−1

2
x>

 ∑
b∈∂i\a

A2
biV

−1
b→i

x+ x>

 ∑
b∈∂i\a

AbiV
−1
b→i(h̄b − ωb→i)

 ,

∝ P (x) exp(−(x− zi→a)>Σ−1i→a(x− zi→a)/2), (25)

where we denoted the average message and variance by

zi→a = Σi→a
∑
b∈∂i\a

AbiV
−1
b→i(h̄b − ωb→i), (26)

Σ−1i→a :=
∑
b∈∂i\a

A2
biV

−1
b→i. (27)

The combination of the equations (22-27) forms the set of Relaxed Belief Propagation (RBP)

22



equations: 

mi→a = η(zi→a,Σi→a),

Bi→a = Diag(mi→a)−mi→am
>
i→a,

zi→a = Σi→a
∑
b∈∂i\a

AbiV
−1
b→i(h̄b − ωb→i),

Σ−1i→a =
∑
b∈∂i\a

A2
biV

−1
b→i,

ωa→i =
∑
j∈∂a\i

Aajmj→a,

Va→i =
∑
j∈∂a\i

A2
ajBj→a,

(28)

with

η(z,Σ) :=
1

Z(z,Σ)

d∑
r=1

πrer exp

(
−1

2
(er − z)>Σ−1(er − z)

)
, (29)

where Z(z,Σ) is the normalization constant so that 1>η(z,Σ) = 1. The complexity of the
iterative version of these equations is of order at most O(d3nm) which is essentially quadratic
in n. Next, we further reduce the complexity of the iteration to O(d3(n + m)) by showing
that it suffices to track the average of the incoming messages at each node. This is due to the
fact that the factor graph is dense and its edges are independent.

B.2 From Relaxed BP to Approximate Message Passing

Let us now derive the equations of the (more efficient) AMP algorithm. We will define a
notion of “total messages” mi,Bi, zi, Σi, ωa, Va and relate them to one another. The
expressions (23), (24), (26), and (27) defining ωa→i, Va→i, zi→a and Σi→a respectively involve
sums over all the neighbors of the node sending the message except the node receiving the
message. We first define ωa, Va and Σi by adding this last term:

ωta :=
∑
j∈∂a

Aajm
t
j→a = ωta→i +Aaim

t
i→a,

V t
a :=

∑
j∈∂a

A2
ajB

t
j→a = V t

a→i +A2
aiB

t
i→a,(

Σt
i

)−1
:=
∑
b∈∂i

A2
bi

(
V t
b

)−1
.

where we introduced a time index t to track the iteration count. Now we attempt to find
a notion of total message zti for zti→a such that the obtained set of equations becomes self
consistent. Once zti is found, then we definemt+1

i andBt+1
i as η(zti ,Σ

t
i) and Diag(η(zti ,Σ

t
i))−

η(zti ,Σ
t
i)η(zti ,Σ

t
i)
>, respectively. Since Σt

i→a −Σt
i = O(1/n) and V t

a→i − V t
a = O(1/n), we

have using (26)

zti→a = Σt
i→a ·

∑
b∈∂i\a

Abi
(
V t
b→i
)−1

(h̄b − ωtb→i),

' Σt
i ·
∑
b∈∂i\a

Abi
(
V t
b

)−1
(h̄b − ωtb→i).
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Substituting the expression ωta→i = ωta −Aaimt
i→a in the above, we get

zti→a = Σt
i ·
∑
b∈∂i\a

Abi
(
V t
b

)−1
(h̄b − ωtb) + Σt

i ·
∑
b∈∂i\a

A2
bi

(
V t
b

)−1
mt

i→b

' Σt
i ·
∑
b∈∂i

Abi
(
V t
b

)−1
(h̄b − ωtb) + Σt

i ·
∑
b∈∂i

A2
bi

(
V t
b

)−1
mt

i→b,

where we also allowed the above sums to run over all neighbors of i since the additional
terms are of order 1/

√
n compared to the entire sum which is of order 1. Now we make the

assumption that the messages mt
i→b are approximately equal for all b ∈ ∂i to a common value

mt
i, up to error 1/

√
n. This assumption is justified by the fact that the graph is dense with

equally strong edge weights, so the messages outgoing from every node are equal, up to first
order. This simplifies the second term:

Σt
i ·
∑
b∈∂i

A2
bi

(
V t
b

)−1
mt

i→b ' Σt
i ·
∑
b∈∂i

A2
bi

(
V t
b

)−1
mt

i = mt
i.

Based on these approximations, we define

zti := Σt
i ·
∑
b∈∂i

Abi
(
V t
b

)−1
(h̄b − ωtb) +mt

i.

Now we treat ωta. Recall ωta =
∑

j∈∂aAajm
t
j→a, and mt

j→a = η(zt−1j→a,Σ
t−1
j→a). We write

zt−1j→a = Σt−1
j→a ·

∑
b∈∂j

Abj

(
V t−1
b→j

)−1
(h̄b − ωt−1b→j)−Σt−1

j→a ·Aaj
(
V t−1
a→j

)−1
(h̄a − ωt−1a→j),

' zt−1j −Σt−1
j→a ·Aaj

(
V t−1
a

)−1
(h̄a − ωt−1a ).

The second term is negligible compared to the first one, so we develop a first order Taylor
approximation of the function η in the second term, and obtain

ωta =
∑
j∈∂a

Aajη(zt−1j→a,Σ
t−1
j→a),

'
∑
j∈∂a

Aaj

(
η(zt−1j ,Σt−1

j )− dη

dz
(zt−1j→a,Σ

t−1
j→a) ·Σ

t−1
j→a ·Aaj(V

t−1
a )−1(h̄a − ωt−1a )

)
,

=
∑
j∈∂a

Aajm
t
j −

∑
j∈∂a

A2
aj

dη

dz
(zt−1j→a,Σ

t−1
j→a) ·Σ

t−1
j→a

 (V t−1
a )−1(h̄a − ωt−1a ).

Based on the expression (29) of η, one can easily check that

dη

dz
(z,Σ) =

(
Diag(η(z,Σ))− η(z,Σ)η(z,Σ)>

)
·Σ−1,

hence ∑
j∈∂a

A2
aj

dη

dz
(zt−1j→a,Σ

t−1
j→a) ·Σ

t−1
j→a =

∑
j∈∂a

A2
ajB

t
j→a = V t

a .
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We therefore end up with the following approximate message passing procedure:

mt+1
i = η(zti ,Σ

t
i),

Bt+1
i = Diag(η(zti ,Σ

t
i))− η(zti ,Σ

t
i)η(zti ,Σ

t
i)
>,

Σt
i =

(∑
b∈∂i

A2
bi

(
V t
b

)−1)−1
,

zti = mt
i + Σt

i ·
∑
b∈∂i

Abi
(
V t
b

)−1
(h̄b − ωtb),

ωta =
∑
j∈∂a

Aajm
t
j − V t

a

(
V t−1
a

)−1
(h̄a − ωt−1a ),

V t
a =

∑
j∈∂a

A2
ajB

t
j .

This is rearranged to the AMP algorithm displayed in Section 2.1, with the notation x̂ti
replacing mt

i.

C State Evolution equations

We derive the state evolution equations from the Relaxed Belief Propagation (RBP) equa-
tions (28). Let Mt = 1

n

∑n
i=1m

t
ix
∗>
i and Qt = 1

n

∑n
i=1m

t
im

t>
i . As we argued in the previous

section, we can redefine Mt and Qt by substituting mt
i by mt

i→a at the cost of an asymptot-
ically vanishing error. In this section, we drop the time indices to lighten the notation. We
expect the variance parameters Va→i in RBP to be concentrated about a constant:

E[Va→i] '
∑
j 6=i

E[A2
aj ]Bj→a =

1

n
α(1− α)

∑
j 6=i
Bj→a = α(1− α)R,

with R := 1
n

∑
jBj→a. A calculation of the second moment of Va→i reveals that it is equal

to the expectation of Va→i plus a lower order term. Therefore we can safely assume that the
quantities Va→i are essentially constant and equal to α(1 − α)R. Next, we deal with Σi→a.
By assuming approximate independence of Abi and Vb→i, we get

E
[
Σ−1i→a

]
=
∑
b6=a

E
[
A2
bi

]
E
[
V −1b→i

]
=

1

n
α(1− α)

∑
b 6=a

R−1

α(1− α)
' κR−1.

We then make the approximation Σ−1i→a ' E[Σ−1i→a], i.e. Σi→a ' κ−1R. Next, we turn our
attention to zi→a:

zi→a = Σi→a ·
∑
b6=a

AbiV
−1
b→i(h̄b − ωb→i)

' 1

κα(1− α)

∑
b 6=a

Abi(h̄b − ωb→i).

Now using ωb→i =
∑

j 6=iAbjmj→b and h̄b =
∑n

j=1Abjx
∗
j , we get

zi→a '
1

κα(1− α)

∑
b 6=a

Abi

∑
j 6=i

Abj(x
∗
j −mj→a) +Abix

∗
i

 .
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The inner sum in the above expression involves n weakly independent terms, so we expect a
central limit theorem to hold. Therefore the only relevant quantities are the expectation and
the variance of z: E[zi→a] = x∗i , and

E[(zi→a − x∗i )(zi→a − x∗i )>] =
1

(κα(1− α))2

∑
b 6=a

∑
j 6=i

∑
b′ 6=a

∑
j′ 6=i

E[AbiAb′i]E[AbjAbj′ ]

× (x∗j −mj→a)(x
∗
j −mj→a)

>

=
1

(κα(1− α))2

∑
b 6=a

∑
j 6=i

(α(1− α))2

n2
(x∗j −mj→a)(x

∗
j −mj→a)

>

= κ−2
m

n

1

m

∑
b 6=a

1

n

∑
j 6=i

(x∗j −mj→a)(x
∗
j −mj→a)

>

' κ−1(D −M −M> +Q),

with D = 1
n

∑n
i=1 x

∗
ix
∗>
i = Diag(π). Hence, we define

X := κ−1(D −M −M> +Q).

Therefore we have made the assumption that zi→a ∼ N (x∗i ,X). Next, we assume that the
zi→a are “independent enough” that a law of large numbers holds in limit n→∞, m/n→ κ:

1

n

∑
i:x∗i=er

mi→a =
1

n

∑
i:x∗i=er

η(zi→a,Σi→a) ' πr Eg
[
η(er +X

1
2g, κ−1R)

]
,

and
1

n

∑
i:x∗i=er

mi→am
>
i→a ' πr Eg

[
η(er +X

1
2g, κ−1R) · η(er +X

1
2g, κ−1R)>

]
,

for all r ∈ {1, · · · , d}, with g ∼ N (0, I). Plugging the above into M and Q yields

M =
1

n

n∑
i=1

η(x∗i +X
1
2g, κ−1R)x∗>i ,

'
d∑
r=1

πr Eg
[
η(er +X

1
2g, κ−1R)

]
e>r ,

Q =
1

n

n∑
i=1

η(x∗i +X
1
2g, κ−1R) · η(x∗i +X

1
2g, κ−1R)>,

'
d∑
r=1

πr Eg
[
η(er +X

1
2g, κ−1R) · η(er +X

1
2g, κ−1R)>

]
.

Finally, it remains to find an expression for R. Recall Bi→a = Diag(mi→a)−mi→am
>
i→a.

Averaging over i and using the assumed concentration of the messages mi→a yields

R =
1

n

n∑
i=1

Bi→a ' Diag

(
d∑
r=1

πr Eg
[
η(er +X

1
2g, κ−1R)

])
−Q,

= Diag(Q1)−Q.
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To sum up, we get a system of self-consistent equations in Mt, Qt, Xt and Rt:

Mt+1 =
d∑
r=1

πr Eg
[
η(er +X

1
2
t g, κ

−1Rt)

]
· e>r ,

Qt+1 =

d∑
r=1

πr Eg
[
η(er +X

1
2
t g, κ

−1Rt) · η(er +X
1
2
t g, κ

−1Rt)
>
]
,

Xt = κ−1(D −Mt −M>
t +Qt),

Rt = Diag(Qt1)−Qt.

This set of equations constitute the State Evolution equations.
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